
O
nline

Pre-print

Chapter 16

Redistricting algorithms

AMARIAH BECKER AND JUSTIN SOLOMON

CHAPTER SUMMARY

Why not have a computer just draw the best map? For many people, this is the first
and only reasonable approach to the problem of gerrymandering. But there are more
than a few reasons to be skeptical of this idea. In this chapter, two computer scientists
survey what’s been done in algorithmic redistricting, with an eye to what computers
can and can’t do.

1 INTRODUCTION

Given frustrations with human behavior when drawing and assessing district
boundaries, technologically minded citizens often call for algorithms to serve
as unbiased arbiters in the redistricting process. Projecting this optimism about
the objectivity of computers, popular science articles regularly trumpet a program-
mer who has “solved gerrymandering in his spare time” [27] or claim that a “tech
revolution... could fix America’s broken voting districts” [46]; one blogger even
opined that Google could “quickly create a neutral, non-gerrymandered election
map... in a few weeks” [23].

Enthusiasm for algorithmic redistricting dates back at least to the 1960s. Even in
the early days of computer technology, multiple authors recognized its potential
value for redistricting. In 1961, Vickrey wrote in favor of what he called “procedural
fairness” [50]:

“If there is thus no available criterion of substantive fairness, it is neces-
sary, if there is to be any attempt at all to purify the electoral machinery
in this respect, to resort to somekindofprocedural fairness. Thismeans,



O
nline

Pre-print
304 Redistricting algorithms

in view of the subtle possibilities for favoritism, that the human ele-
ment must be removed as completely as possible from the redistricting
process. In part, this means that the process should be completely me-
chanical, so that once set up, there is no room at all for human choice.
More than this, it means that the selection of the process, whichmust
itself be at least initiated by human action, should be as far removed
from the results of the process as possible, in the sense that it should
not be possible to predict in any detail the outcome of the process.”

Writing at nearly the same time, EdwardForrest [18] advocated for using computers
for unbiased redistricting in a behavioral science journal in 1964:

“Since the computer doesn’t know how to gerrymander—because two
plus two always equals four—the electronically generated map can’t
be anything but unbiased. Its validity is immediately acceptable to
responsible political leaders and the courts.”

Since that time, many algorithms have been designed to support redistricting.
Software has become a ubiquitous partner in the design and analysis of districting
plans, including sophisticated tools that leverage census data, electoral returns,
and highly detailedmaps.

The introduction of computer technology brings a new set of ethical and philo-
sophical—as well as mathematical—challenges to redistricting. Modern algo-
rithmsmake it possible to engineer districts with remarkable precision and control,
providing opportunities to gerrymander in subtle ways. Questions of allowable
data and procedures are complicating long-standing conversations about “tradi-
tional districting criteria.” On the technical side, fundamental limits involving the
computational complexity of certain redistricting problems reveal that Vickrey’s
and Forrest’s dream of perfect redistricting through algorithmsmay be practically
unrealizable.

On the other hand, recent progress has made algorithms into very promising
partners in redistricting reform. This chapter explores theways inwhichcomputing
has been used in redistricting and presents a survey of redistricting algorithms. We
categorize algorithms into those that are used to generate new plans and those that
are used to assess proposed plans. We conclude with a general discussion about
best practices for algorithmic tools in the redistricting process.

1 .1 WHAT IS AN ALGORITHM?

An algorithm is a procedure or set of instructions that a computer uses to solve a
problem. Generally, algorithms take input data and produce an output solution.
For example, an algorithm that generates a districting planmight take as input the
populations and geographies of census units (e.g., precincts, census blocks, census
block groups) as well as the desired number of districts and produce as output a
plan listing which census units are assigned to each district.

Although a computer may ultimately be carrying out an algorithm, humans write
the instructions and make the algorithmic design decisions. For example, for
computers to help identify good districting plans, a humanmust first definewhat it



O
nline

Pre-print
1. Introduction 305

means for one plan to be better than another. A computer has no built-in method
for assessing plans or anything else; it simply follows the user’s instructions. In
this sense, an algorithm or piece of software easily can inherit the biases and
assumptions of its human designer.

Our chapter focuses on techniques that generate district boundaries, and we leave
the discussion of how to use those for other parts of the book. Enumeration algo-
rithms list every possible way to district a given piece of geography. These algo-
rithms have the advantage that no stone is left unturned, but even small munici-
palities can have unfathomably huge numbers of possible plans, putting this hope
out of practical reach. So this section is brief. We divide the subsequent discussion
into two variants of this problem:

• Sampling algorithms also generate collections of districting plans, but the
intention is not to be exhaustive. When carried out well, these methods can
provide an overview of the properties of possible plans.

• Optimization algorithms attempt to identify a single plan that extremizes
some quality score. These automated redistricting tools are effective in some
scenarios but require everyone to agree on a single scoring function—a dif-
ficult task since somanymetrics are used to evaluate proposed districting
plans.

We examine various algorithms aimed at sampling or optimization, including
scenarios where they are likely to performwell or poorly.

When it comes to quality, some of the algorithms described in this chapter are
specifically built around particular measures (e.g., Plan A is better than Plan B if
and only if it has a smaller population deviation), while others allow the user to
specify a score function (e.g., α ·county splits+β ·population deviation where α
and β are left as user parameters). The decision of how to weight variousmeasures
when comparing plans is expressly human, and the consequences of adjusting the
weighting even a little can be drastic. For the rest of this chapter, unless otherwise
noted, comparative terms like better plan and best plan are assumed to be with
respect to whichever plan score is being used, and should not be interpreted as
endorsements of fairness.

1 .2 COMPARING ALGORITHMS

Algorithms are primarily analyzed by two considerations: the quality of the solu-
tions they identify and their efficiency. The former addresses how good or usable
an output is, and the latter addresses how long it takes to generate output. Usually
there is a trade-off between quality and runtime: it takes more time to find better
solutions. Typically, however, one algorithm will outperform another for some
problem instances but not for others. Moreover,many of the algorithmswepresent
are designed to accomplish slightly different objectives from each other andmay
not be suitable for direct comparison. Ultimately, which algorithm is right or best
depends on the priorities of the user.

In redistricting,majorpropertiesof interest for samplingalgorithms includewhether
the algorithm is efficient enough to be practical on (large) real-world instances,



O
nline

Pre-print
306 Redistricting algorithms

whether it is actually used as a sampler in practice, whether it generates or can
generate every valid plan, whether it tends to generate more compact plans (with
nicely shaped districts), and whether it targets a known probability distribution
(i.e., if it can be tuned to weight a certain planmore than another by a factor that
we control). Table 16.1 summarizes several sampling algorithms presented in this
chapter along these axes. For some algorithms the given property is true with a
caveat (indicated with yellow squares), explained in the caption.

Ge
ne
rat
es
ev
ery
va
lid
pla
n

Ca
n g
en
era
te
an
y v
ali
d p
lan

Ca
n s
am
ple
rea
l-w
orl
d i
ns
tan
ce
s

Us
ed
as
a s
am
ple
r in

pr
ac
tic
e

Pr
om
ote
s c
om
pa
ct
pla
ns

Ta
rge
ts
a k
no
wn
dis
tri
bu
tio
n

Enumeration X X – – – X
Random-Unit Assignment – X – – – X

Flood Fill – X – – X –
IterativeMerging – – X X X –

Flip StepWalk – X X X X X
RecombinationWalk – X X X X X

Power Diagrams – – X – X –

Table 16.1: General properties of redistricting sampling algorithms; note that each of thesemethods ad-
mitsmany variations thatmay disagree with this table. Caveats are indicated in yellow: power diagrams
can handle large instances but generate geometric partitions rather than plans built from census units;
the ability of flip step walks and recombination walks to generate any valid plan depends on the partic-
ular redistricting constraints and underlying geography; some flood fill variants promote compactness;
and flip stepwalks can target particular distributions (including ones that favor compactness) but often
lack evidence of convergence.

Figure 1: Example districting plans for our four test cases.

For optimization algorithms, in addition to whether it is efficient enough to be
practical for real-world instances, we are further interested in whether the algo-
rithm identifies global optima or only local optima and whether the algorithm can
handle customized scoring (objective) functions. Table 16.2 summarizes these
considerations for several optimization algorithms presented in this chapter. A key
takeaway highlighted in this table is that there are no algorithms that are efficient
enough to use in practice that can identify best possible plans (global optima) for
nontrivial scoring functions. This makes it difficult to assess solution quality: If we



O
nline

Pre-print
2. Generating all plans: Enumeration 307

Pra
cti
ca
l a
t s
ca
le

Fin
ds
glo
ba
l o
pti
ma

Fin
ds
loc
al
op
tim
a

Cu
sto
mi
za
ble

Enumeration – X X X
Power Diagrams X – X –

Metaheuristics/RandomWalks X – X X
Integer Programming – X X X

Table 16.2: General properties of redistricting optimization algorithms; note that each of thesemethods
admits many variations that may disagree with this table. Caveats: power diagrams are geometric and
do not directly generate plans built from census units; andmetaheuristics are not guaranteed to be
practical, but are often efficient in practice.

do not know the best possible score, we have no yardstick with which tomeasure
other solutions.

BENCHMARKS

The remainder of this chapter explores these algorithmic properties in detail.
Throughout the chapter, we illustrate algorithms using figures and experiments.
In some cases, we rely on simplified (“toy”) examples, like partitioning the cells of
a small grid into contiguous pieces. Our four most frequent test cases are the 6×6
grid, the 10×10 grid, the 99 counties of Iowa, and the 75 counties of Arkansas (see
Figure 1).

Iowa is a particularly useful choice because it is grid-like but has a variable popula-
tion in the units and amanageable number of pieces.1

As an objective function, we often use a compactness metric called cut edges to
compare algorithmic techniques (Figure 2). Bydefinition, the cut edge score counts
howmany pairs of neighboring units are assigned to different districts in a given
plan.

2 GENERATING ALL PLANS: ENUMERATION

Anatural algorithmic strategy in redistricting is simply to enumerate all valid plans.
That is, given a list of rules determining which plans are valid, the computer is
tasked with generating a list of every possible compliant plan. In this section, we
explain why enumeration is impossible in practical terms.

If we could enumerate all plans, we would have a straightforward optimization
algorithm: score all possible plans to identify the best one (this is called a brute
force algorithm). This approach to optimization is exact because it considers every

1Unlike most states, which build plans out of much smaller census units (like census blocks), Iowa,
by law, builds congressional districts out of whole counties.



O
nline

Pre-print
308 Redistricting algorithms

Figure 2: A 6×6 grid has a total of 60 pairs of neighboring units, and we could imagine drawing an edge
between neighbors. A plan dividing the grid into quadrants would cut just 12 of these edges. On the
other hand, a plan with winding borders could cut up to 28 edges out of 60. The white markers indicate
the cut edges for the two plans shown.

n # plans
1 1
2 2
3 10
4 117
5 4,006
6 451,206
7 158,753,814
8 187,497,290,034
9 706,152,947,468,301

Table 16.3: The number of ways to divide an n×n grid into n contiguous parts with n units each [14, 24].

possible alternative, so it is guaranteed to find the best one. Random plan genera-
tion is also straightforward with enumeration: from the set of all valid plans, select
one uniformly at random, or one weighted by some desired probability distribu-
tion. Because of its conceptual advantages, enumeration has been proposed as a
strategy to identify and evaluate plans for decades [22, 29, 43, 44].

If enumeration is so powerful, why is it not used broadly in redistricting? There are
two key issues. First is the sheer number of ways we can draw district lines, making
the list of valid plans unfathomably large in practice. For this reason, in practice it
can only be used on very small instances. Put differently, redistricting famously
suffers from combinatorial explosion: as the problem gets larger, the number of
valid solutions increases exponentially, quickly exceeding the practical limits of
computing power and data storage.

To get a sense of how quickly the number of valid solutions increases, consider the
simple problemof partitioning ann×n grid inton equal-sizeddistricts [14, 24]. The
number of partitions as a function of n is given in Table 16.3, for small values of n,
and shown in Figure 3 for the n = 3 case. Even for this relatively simple redistricting
problem, these numbers quickly become too large for enumeration to be practical.
This combinatorial explosion is not unique to grids: Enumerating plans for actual
states is out of the question in nearly any context. For example, the number of ways
to build four congressional districts out of the 99 counties of Iowa is estimated to
be about 1024 (or a trillion trillions) [16], but the exact number is not known. This



O
nline

Pre-print
2. Generating all plans: Enumeration 309

Figure 3: Complete enumeration of ways to divide a 3×3 grid into three equal-sized, rook-contiguous
districts. Note that each of the ten plans has the same number of cut edges (6 out of the 12 neighboring
units are cut ).

estimate is tiny compared to the number of plans that can be built from the finer
units like precincts or censusblocks that are typically used. At theprecinct level, the
still-small problem of dividing 250 contiguous Florida precincts into two districts
has approximately 5×1039 different valid solutions [16], which in turn isminuscule
compared to the full problem of dividing Florida’s roughly 6,000 precincts into its
27 congressional districts.

Even when the full list of plans for a given geographic area is small enough to store
on a computer, we have to consider the amount of time it takes to generate such a
list. That is, not only is the list of plans extremely long, each plan on the list can
take a long time to find.

Another problem arises from combinatorial explosion. For the 6×6 grid with four
districts, recall that plans can have anywhere from 12 to 28 cut edges. Complete
enumeration shows that over 93% of all these plans have 21–28 cut edges. Like
other districting issues, this imbalance only accelerates as the size of the problem
grows. In a full-sized problem,more than 99.999% of balanced, contiguous plans
are so wildly shaped that they would never be considered in practice.2 So if you are
trying to use the enumeration to get an overview of possibilities, youmay not get a
very good picture if you simply weight them all equally.

Given that enumeration is neither computationally tractable nor sufficient for
understanding real-world redistricting problems, we need other strategies for
generating and assessing plans.

2This is another matter of counting: there are more winding lines than straight lines, so there are far
more noncompact than compact plans. See DeFord et al. [12] for more discussion.



O
nline

Pre-print
310 Redistricting algorithms

Figure 4: Randomassignment of Iowa counties; each color represents a different district. Unsurprisingly,
the resulting plan has disconnected districts and balances neither the number of counties nor the
district populations.

3 GENERATING MANY PLANS: SAMPLING

Enumeration is an example of an exhaustive search technique, in which we visit
every corner of the space of districting plans to get a complete understanding. But
as we have discussed, computational impedimentsmake enumeration impractical
when processing real-world data. For this reason, most algorithms related to redis-
tricting generate and analyze a relatively small set of districting plans, essentially
targeting their search. With this motivation inmind, in this section we introduce
sampling algorithms, whose job is to produce a short but useful list of options.

Enumeration algorithms are deterministic in nature, meaning that every time
the same piece of code is run we receive the same result. In contrast, sampling
algorithms tend to be randomized, meaning that they have the ability to make
different decisions every time they are run. Randomized—also known as stochastic
or nondeterministic—algorithms can be extremely powerful in their simplicity and
efficiency.

We focuson randomplangenerators, randomizedalgorithms that generate samples
of redistricting plans given a fixed piece of geography. These methods produce
output that can either be analyzed on its own or used as a subroutine for other
algorithms in redistricting. For example, optimization algorithms designed to
extract high-quality plans frequently use random plans as starting points and then
employ a number of strategies to improve the quality of the starting plan to shape
it into the optimized output.

There are several crucial questions to askwhen evaluating randomplan generators:

• What is the distribution of the generated plans?
By nature, samplingmethods only generate a subset of possible plans. For
this reason, we must understand both the distributional design and unin-
tentional biases of these methods. Your first thought might be to sample
from a uniform probability distribution, in which all valid districting plans
are equally likely to be included in the sample.3 But some sampling meth-

3An efficient algorithm probably does not exist that can draw uniform samples efficiently [41].



O
nline

Pre-print
3. Generatingmany plans: Sampling 311

odsmight instead be weighted towardmore compact plans, or tilted toward
a particular partisan balance. Whether intentional or unintentional, this
weighting can have substantial consequences if sampling is used to summa-
rize the population of alternative plans.

• Can the sampler generate any possible plan?
Even though samplingmight not beuniform,wemightwant to knowwhether
there is some nonzero probability of generating every possible plan. Some
samplingmethods restrict their consideration to plans with certain shapes
or other properties, whichmakes it easier to traverse the space of plans but
may unintentionally exclude plans relevant to a given redistricting task.

• Do the samples accurately capture priorities and constraints?
Redistricting rules can be complex, placingmany restrictions on the prop-
erties of acceptable plans. It can be difficult to customize a new sampling
algorithm to each set of rules and regulations. Winnowing, in which sam-
ples are generated using a first method and then noncompliant plans are
discarded, can repair a sampler after the fact, but few if any plans may be
left in an ensemble after this cleanup step, and it can limit control over the
probability distribution.

3 .1 GENERATING PLANS FROM SCRATCH

Many random plan generators start from a blank slate, taking as input the parame-
ters of a redistricting task: the desired number of districts, the population of each
census unit, and the adjacency of these units (i.e., which units share a border).
The algorithm then outputs a random plan that assigns these units to districts or
describes where to draw the lines between districts.

RANDOM ASSIGNMENT AND REJECTION SAMPLING

Perhaps the simplest approach to generating a plan is the random assignment
algorithm, which is one of several approaches implemented in the BARD redis-
tricting software package [2]. This algorithm divides a region into k districts by
randomly and independently assigning each unit a district label from 1 through k.
Figure 4 shows a typical random assignment; unsurprisingly, it does not satisfy any
of the familiar constraints, such as contiguity or population balance. One way to
rectify this problem is to repeatedly generate candidate plans, discarding invalid
plans until a valid one is produced. This is our first encounter with the tactic called
rejection sampling, shown in Algorithm 1.

This is not very efficient. In fact, it is so unlikely that random assignment of census
units results in a valid plan that wewould expect to discard an astronomically large
number of proposed candidate plans before finding a single valid one.



O
nline

Pre-print
312 Redistricting algorithms

Algorithm 1 Random-Unit Assignment
1: for each census unit i do
2: District assignment(unit i ) ←RANDOM(1,2, . . . ,k)

Algorithm 2 Random-Unit Assignment with Rejection
1: while plan is invalid do
2: Plan←RANDOM-UNIT ASSIGNMENT

Random assignment is the easiest algorithm to analyze theoretically and has the
favorable property that every possible plan can be generated with some nonzero
(but vanishingly small) probability, but most of the analysis simply reveals that it is
ineffective. Instead, in practice it is desirable for samplers to produce valid plans
with reasonably high probability. In the remainder of this section, we stay attentive
to the question of rejection rate.

FLOOD FILL AND AGGLOMERATION

A widely discussed family of practical plan-generating algorithms employs a flood
fill strategy. These algorithms grow districts from seed units by gluing together
adjacent units until the districts reach the desired population. Many flood fill
variants have been proposed, including [8, 37, 43, 44, 48, 50]; we highlight a few
examples below.

Algorithm 3District-by-District Flood Fill
1: for each district i do
2: seed←RANDOM(unassigned census unit)
3: District assignment(seed)← i
4: while Population(district i )≤ target_population do
5: spread←RANDOM(unassigned NEIGHBOR(district i ))
6: if Pop(district i )+Pop(spread)≤ target_population then
7: District assignment(spread)← i

Many flood fill algorithms build one district at a time, as outlined in Algorithm 3;
Figure 5 shows an example. In this case, a single unit is selected as a “seed” to start
growing a district (the red county in the example in Figure 5). Then, the algorithm
iteratively glues units onto its side until the district reaches a desired size. At each
step there are multiple options for which unit to add next (pink counties in the
example in Figure 5); the simplest way tomake this decisionmight be to choose
randomly, which is the version in the pseudocode for Algorithm 3.

Rather than making this decision completely randomly, we can make strategic
choices that encourage the partially built district to have particular properties.
For example, one variant preferentially chooses units that lie within the bounding
box of the currently growing district to improve the compactness of the plans [8];
Figure 6a illustrates this heuristic on our running example. Another variant also
suggested in Cirincione et al. [8] preferentially chooses units that belong to census
tracts or counties that are already included in the growing district (see Figure 6b).



O
nline

Pre-print
3. Generatingmany plans: Sampling 313

Figure 5: An example of flood fill on Iowa counties. Counties are colored red as they are added to the
growing district. The pink counties indicate candidate neighboring counties to annex at each step.

(a) Bounding-box variant (b) County-preserving variant

Figure 6: (a) Bounding-box flood fill variant [8]; the solid pink county lies entirely within the bounding
box of the growing red district and is preferentially chosen over the striped pink neighboring counties.
(b) County-respecting flood fill variant [8]; the solid pink county subunits lie within the county of the
growing reddistrict and are preferentially chosen over the stripedpinkneighboring subunits in different
counties.

A challenge with flood fill algorithms is that they can get stuck. Some districts grow
in such a way that does not leave enough space for the remaining districts (see
Figure 7). Typically at this point, the plan is rejected and the algorithm starts over,
repeating this process until a valid plan is generated, although a few algorithms
can adjust initially invalid plans until they are valid (see Section 4.4). Though this
refinement strategy has a lower rejection rate, these adjustments are often quite
computationally intensive and time-consuming.

A second approach to flood fill builds all the districts simultaneously, as depicted
in Algorithm 4. Rather than building one complete district, fixing it, andmoving
on to the next district, this algorithm grows all the districts in the state in parallel.
In each iteration, the algorithm now has to make two decisions: which district

Algorithm 4Whole Plan Flood Fill
1: for each district i do
2: seed i ←RANDOM(unassigned building-block unit)
3: District assignment(seed i )← i

4: while some district is still underpopulated do
5: district j ←RANDOM(underpopulated district)
6: spread←RANDOM(unassigned NEIGHBOR(district j ))
7: if Population(district j )+Population(spread)≤ target_population then
8: District assignment(spread)← j



O
nline

Pre-print
314 Redistricting algorithms

to grow, and which adjacent unit to add onto that district. A primary advantage
of this approach is that all the districts are treated symmetrically. In contrast, in
the one-at-a-time strategy from Algorithm 3, the shape of the first district drawn
might be quite different than the shape of the last district because as the algorithm
proceeds there are fewer options for how to grow a district outward.

One variant of the whole-plan flood fill method suggested in Liu et al.[32] starts
from k seed units along the boundary of the state. Another variant chooses one
seed from each of k predefined zones across the state, promoting amore uniform
distribution of the growing districts [32, 44]. Figure 8 compares these options. Such
variationsmay be designed to reduce the rejection rate or to tailor the sampling
distribution (e.g., to generate samples withmore compact plans).

Figure 7: The flood fill algorithmgrows the districts one at a time. The top example arrives at a complete
plan. The bottom two examples lead to rejection because there is no way to complete the plan with
contiguous districts and population balance.

Figure 8: Left: district seeds were chosen uniformly at random from all counties. Center: district seeds
were chosen uniformly at random from the boundary counties. Right: one district seed was chosen
uniformly at random from each predefined zone.

Anothermethodwith a similar flavor tofloodfill is an iterativemerging approach [9,
10]: at each step, a geographic unit is chosen at random andmerged with an adja-
cent unit to form a new aggregate unit. This process is repeated until the number
of aggregate units is equal to the desired number of districts. These resulting pieces
(composed of many of the original census units merged together) may have unbal-
anced populations, so the algorithmmight thenmake small refinements until the
populations are balanced (see Section 4.4). Themerging process is efficient, and by
choosing the closest unit tomerge at each step (measured by distance between the
units’ centroids), thismethodpromotes compactness. Thepopulation-rebalancing
process, however, can be inefficient and may degrade compactness. This flood



O
nline

Pre-print
3. Generatingmany plans: Sampling 315

fill variant has been usedmany times in recent redistricting litigation, including,
for example, the 2018 League of Women Voters v. Commonwealth of Pennsylvania
case.

For many flood fill variants, every valid plan has a chance of being generated in
theory. It is not clear, however, how likely someplans are tobegenerated inpractice,
and there has been little focus in the literature on the distribution of plans from
which flood fill algorithms sample.

We can empirically demonstrate the non-uniformity of the flood fill method. Fig-
ure 9 depicts the distribution of the number of cut edges across sampled plans
generated by different flood fill variants4 versus complete enumeration, which is
possible because we can check all 442,791 ways to partition a 6×6 grid into four
equal-sized districts. Figure 10 shows the corresponding distributions ofwhere
these cut edges occur most frequently across the samples.

Recall that low numbers of cut edges indicate that the districts have short bound-
aries. If a flood fillmethod sampled uniformly among all valid plans, a large sample
of generated plans would be expected to have a nearly identical distribution of cut
edges as the full enumeration. These experiments demonstrate that—as we would
expect—flood fill does not uniformly sample from the set of valid plans and that
different flood fill variants give different distributions of generated plans.

This is our first example of a non-uniform distribution over plans (i.e., some dis-
tricting plans are more likely to appear than others). We have already seen that
non-uniformity can be desirable or even necessary for a useful samplingmethod,
but it could easily be the case that innocuous modeling decisions significantly
affect the behavior of the resulting samples. This distributional design question
comes into play if we want to perform statistical calculations, e.g., comparing
a human-drawn plan with the “average” computer-drawn plan generated using
a sampling method. Without an understanding of the sampling distribution, a
districting plan being “typical” or being an “outlier” holds little meaning.

3 .2 GENERATING PLANS FROM PLANS

A different sampling strategy generates a random plan by editing an existing plan,
rather than starting from a blank slate. This strategy could be perturbative, for
example, generating a new plan by wiggling the boundaries of an old plan, or it
could take larger steps, for example, merging several districts in an existing plan
and then redistricting that region using amethod from Section 3.1. In either case,
we are likely to “see” part of the previous plan in the edited plan, but if we repeat
this process enough times in a randomwalk, this autocorrelation decreases: after
many steps, we should see a plan that has little in commonwith the initial one.

There are many reasons why randomwalks might be preferable to generating a
completely new plan for each sample. As we have discussed, the space of potential
plans is huge and includes many undesirable examples. If we find a good plan,

4For this demonstration, each flood fill variant was run 300,000 times. In our implementation, the
success rate of flood fill on a 6×6 grid ranged between 5 and 10% for the standard and whole-plan
variants and was close to 40% for the bounding-box variant.



O
nline

Pre-print
316 Redistricting algorithms

Figure 9: Cut-edge comparison for flood fill methods that divide a 6×6 grid into four equal districts.
The bounding boxmethod succeeds at favoringmore compact plans.

we might want to see if we can edit it to find others (or to make it even better)
rather than obliterating it. Furthermore, editing steps are oftenmore efficient to
implement than generating a plan from scratch. On the other hand, suppose that
each time we generate a new plan, we do so bymaking a tiny perturbation in the
boundary of a plan we have already generated (cf. the “flip” method described
below). Then, we will needmany, many steps of this randomwalk before the plans
we generate look significantly different from one another. This “explore–exploit”
trade-off—between the potential for large exploring steps to find a completely new,
effective plan and the potential for small perturbative changes, exploiting a good
plan tomake it better—is a typical one in randomized search.

To introduce some terminology, the new plan generated by editing an existing plan
corresponds to a step of the algorithm. The set of plans that can be generated in
one step from some Plan A define the neighbors of Plan A in the state space. A
randomwalk is a process for taking a sequence of these steps, where at each step
a neighboring plan is generated and chosen to be the next plan from which to
continue. Randomwalk algorithms aremotivated and discussed inmore detail in
Chapter 17. Here, we briefly describe themmostly as points of comparison with
other district generationmethods.

FLIP AND RECOMBINATION

Perhaps themost minimalistic way to generate a new plan from an existing plan is
to change the district assignment of a single unit at a time. For instance, if a census
block in District A lies on the boundary betweenDistrict A andDistrict B, changing
the assignment of this block so that it is in District B results in a slightly different



O
nline

Pre-print
3. Generatingmany plans: Sampling 317

(a) Full Enumeration (b) Standard Flood Fill (c) Bounding Box Flood Fill

(d)Whole-PlanFloodFill (Uniform
Seeds)

(e) Whole-Plan Flood Fill (Bound-
ary Seeds)

(f) Whole-Plan Flood Fill (Zone
Seeds)

Figure 10: Cut-edge heatmaps corresponding to samples in Figure 9. The color indicates the percentage
ofplans in the sample inwhich that edge is a cut edge. Figure 9 shows that all of thefloodfill variants tend
to have fewer cut edges than would be expected from a uniform sample (compare the top distribution
to the bottom five). These heatmaps show that the relative distribution ofwhere the cut edges occur is
similar for several of the variants (compare (b) with (d) and (e)). The plans made by the bounding box
method (c) tend to have substantially fewer cut edges than would be expected from a uniform sample
(see Figure 9), and we see here that edge cut frequency corresponds to proximity to the center of the
grid. All three whole-plan variants tend to produce samples with a smaller number of cut edges than
the full enumeration, where edge cut frequency increases closer to the center of the grid, and in the
zone-seeded variant the edges close to the zone boundaries are cut substantially more frequently than
the edges far from the zone boundaries.

districting plan. We proceed if this simple edit known as flipping preserves the key
property that Districts A and B are contiguous.

Flip-step algorithms change the assignments of randomly chosen units along
district boundaries; they are used widely in the redistricting literature [6, 15, 38,
43, 45]. Algorithm 5 details a single flip step, illustrated in Figure 11. Specifically, a
candidate flip unit is chosen randomly from geographic units on the boundaries
of two or more districts. The assignment of this candidate unit is then flipped
from its current district to that of a neighboring district, unless doing so results
in an invalid plan (e.g., districts becoming discontiguous or resulting population
deviation larger than allowed). A single flip step creates a new plan that is nearly—
but not completely—identical to the previous plan, so typically this step is iterated
many times (up tomillions or billions) to generate the next plan in a randomwalk.

Modifications to the flip step can bemade to anticipate and fix issues that appear
with the naive version. For instance, to promote plans with a balanced population,



O
nline

Pre-print
318 Redistricting algorithms

Algorithm 5 Basic Flip Step
1: flip unit← RANDOM(boundary unit)
2: district i ←District assignment(flip unit)
3: district j ←District assignment(neighboring unit not in district i )
4: if reassigning flip unit from i to j results in a contiguous and population-
balanced plan then

5: District assignment(flip unit) ←district j

Nagel [38] proposes swapping the assignments of two units on either side of a
shared boundary, rather than just flipping a unit from one side to another. We
can call this a swap step. To take larger coherent steps than a single-unit flip,
some techniques [15] flip clusters of contiguous units along the same boundary.
Introducing a probabilistic weighting can promote compactness or any other
desired priority.

Another method of stepping from one valid plan to a neighboring valid plan is to
merge two ormore neighboring districts and re-partition them into new districts,
keeping the rest of the plan the same; see Figure 12 for an example. This strategy
has been named recombination in recent work (see DeFord et al. [12] for a survey).

Figure 11: In this illustration of a flip step, the white node in themiddle figure is the randomly chosen
district boundary unit. The left figure shows the original plan and the right figure shows the plan after
the white unit ‘flips’ from red to yellow.

Figure 12: The figures on the right illustrate three different potential outcomes from taking a single
recombination step from the starting plan shown in the left figure.



O
nline

Pre-print
3. Generatingmany plans: Sampling 319

Figure 13: Cut-edge distribution comparison for generating four-district planswith up to 5%population
deviation for a 10×10 grid.

3 .3 COMPARING SAMPLERS

We conclude this section by comparing several different sampling methods for
generating four-district plans from the 10×10 grid and the Iowa counties. Again, as
we did for the flood fill variants, we compare the distributions of both the number
of cut edges (Figures 13, 14) and the location of where the cut edges occur most
frequently (Figures 15, 16). This time, since the problem is too big for complete
enumeration, we use our samplers: standard flood fill, bounding box flood fill, a
randomwalk using flip steps, a randomwalk using recombination steps, iterative
merging, and a power diagrammethod (described below in Section 4.1).5

For both the grid and Iowa, the samples generated by flip-step walks have substan-
tially more cut edges than those generated by the other variants. The samplers
that tend to generate more compact plans also tend to have cut edges more highly
concentrated closer to the center and very few cut edges near the corners and
boundary. Interestingly, the edges near the higher populated Iowa counties are
also substantially more frequently cut than the less populated counties (see Fig-
ure 17). Againwe see that for both the 10×10 grid and Iowa, the bounding-box flood
fill variant tends to generate plans that have fewer cut edges than the standard
flood fill variant.

Though samples derived from recombination walks, iterative merging, and power
diagrams tend to havemore compact plans (fewer cut edges) than the other vari-

5As we will see below, power diagrams are geometric partitions in which district boundaries may
split census units. We assign each of these split units to the district with themost populous share of
the unit, rejecting any plan that fails to maintain contiguity and population balance. This last method
helps to illustrate the blurry line between sampling and optimization.



O
nline

Pre-print
320 Redistricting algorithms

Figure 14: Cut-edge distribution for generating four-district plans with up to 5% population deviation
using Iowa counties with variousmethods. The enacted plan (shown in Figure 1) has 47 cut edges and
0.005 percent population deviation.

ants, the power diagram samples in particular contain only a small number of
distinct solutions (for the grid, there was only one unique solution in a sample of
100,000). This illustrates that even algorithms with some randomnessmight not
generate a particularly diverse, let alone representative, sample.

4 SEEKING “BEST” PLANS: OPTIMIZATION

Perhaps the most obvious application of computation to redistricting involves
optimization of districting plans. Optimization algorithms extremize (maximize
or minimize) an objective functionwhile satisfying some set of constraints. In the
context of redistricting, an optimization algorithmmight be designed tomaximize
measures such as the Polsby–Popper or Reock compactness scores (see Chapter 1)
or thenumber of competitive districts, or tominimizemeasures suchaspopulation
deviation, the number of county splits, or the number of cut edges. The objective
functionmight be one of these single measures, or it can be a composite that com-
bines several. Accompanying the objective function, the constraints likely include
legal requirements, such as contiguity and population balance. Other require-
ments such as VRA compliance can be difficult to express as formal mathematical
constraints.

Unfortunately, redistricting optimization problems are not easily solved in prac-
tice. Nearly any way of phrasing optimization for redistricting suggests that it
belongs to a class of problems called NP-hard. For this reason, we should not
expect optimization to extract the best possible solution to a redistricting problem.



O
nline

Pre-print
4. Seeking “best” plans: Optimization 321

(a) Standard Flood Fill (b) Bounding Box Flood Fill (c) Flip StepWalk

(d) RecombinationWalk (e) IterativeMerging (f) Power Diagrams

Figure 15: Cut-edge heatmap corresponding to samples in Figure 13. The color indicates the percentage
of plans in the sample in which that edge is a cut edge.

Complexity limitations have been known throughout the history of algorithmic
redistricting: In Nagel 1965 [38], acknowledged that their proposed algorithm “will
not guarantee that the criterion is as low as mathematically possible, though it
should be low enough to satisfy the political and judicial powers that be.”

A reasonable expectation of optimization algorithms is that they can identify good
enough plans andmake improvements to proposed plans. With this looser goal in
mind, in this section we describe several algorithmic optimization techniques that
have been proposed for redistricting.

4 .1 CLUSTERING AND VORONOI APPROACHES

Mostmethods in this chapter construct plans by assigning labels to a fixed set of
census or other geographical units. A different class of methods for sampling and
designing plans ignores these unit boundaries in favor of drawing lines directly
on amap of the underlying geography. These geometricmethods typically lead to
plans with compact boundaries, although sometimes this compactness comes at
the cost of other redistricting criteria that are harder to express geometrically.

Note that although there is a huge-but-finite number of plans when we construct
themoutof censusunits, there is an infinite numberofwayswecandrawgeometric
dividing lines on a map. For this reason, we cannot expect these algorithms to
have a positive probability of generating every possible plan. Rather, they often
make local decisions intended to promote generation of attractive plans (e.g., that



O
nline

Pre-print
322 Redistricting algorithms

(a) Standard Flood Fill (b) Bounding Box Flood Fill (c) Flip StepWalk

(d) RecombinationWalk (e) IterativeMerging (f) Power Diagrams

Figure 16: Cut-edge frequency comparison corresponding to samples in Figure 14. The color indicates
the percentage of plans in the sample in which that edge is a cut edge.

Figure 17: Iowa populationmap.

the boundaries between districts must be straight lines) but might assemble these
local decisions in a stochastic fashion.

A central example of a geometric approach to redistricting draws inspiration from
another part of computer science. A common task in statistics andmachine learn-
ing involves clustering data based on proximity. Clustering methods are often
geometric in nature: their job is to find the dividing lines between different groups
of data points. Along these lines we can cluster units on amap into districts based
on geographic and other considerations.

For example, a “splitline” algorithm [20] repeatedly divides regions into two sub-
regions, starting with the entire state and ending with districts, at each step identi-
fying a line that evenly splits the population (see Figure 18). The result is a fairly
compact districting plan. A sampling variant might randomly draw from the set of
valid splitlines in each bipartitioning step, whereas an optimization variant might
choose the shortest splitline each time.

One of the simplest and most common approaches to clustering uses Voronoi



O
nline

Pre-print
4. Seeking “best” plans: Optimization 323

Figure 18: In this illustration of the shortest-splitline algorithm, the left figure shows the population
distribution of a fictional region. The subsequent figures show the regions being bisected using the
shortest line that evenly divides the region’s population.

diagrams, such as the ones illustrated in Figures 19 and 20. In a Voronoi diagram,
we choose a set of k points on themap to be district hubs. Then, themap is divided
into regions based on proximity: The Voronoi cell associated with a particular
district hub is the set of points on themap closer to that hub than to any other hub.
Thatmeans that the cells are built for efficiency in distance terms, which obviously
promotes compactness. This, in addition to straight-line boundaries and convex
shapes, has made the Voronoi approach to redistricting attractive to several teams
of researchers [13, 33, 35, 40, 45, 47].

Figure 19: Three different ways to draw four district hubs in Iowa and the corresponding Voronoi
diagrams.

Figure 20: The three centroids on the left correspond to the Voronoi diagram on the right. Because
Nebraska’s geography is nonconvex, the red district is disconnected.

Note that the Voronoi process is only deterministic after the location of the hubs
has been fixed (see Figure 19); a reasonable question to ask when using Voronoi
diagrams for redistricting is where to place the k hubs to optimize the quality of
the diagram. Themost popular formulation is called a k-means problem, seeking
to place district hubs to minimize the average squared distance between a resi-
dent and their district’s hub [2, 7, 21]. A simple and often effective algorithm for
k-means is Lloyd’s algorithm [19, 34], detailed in Algorithm 6, which alternates



O
nline

Pre-print
324 Redistricting algorithms

betweenmoving each district hub to the average location of that district’s residents
(the centroid) and drawing new districts with those hubs, then iterating until this
process converges, i.e., the changes get arbitrarily small.

Algorithm 6 Lloyd’s k-Means Algorithm
1: Identify k initial district hubs: hub 1, hub 2, ..., hub k (also calledmeans).
2: while process has not yet converged do
3: for each geometric point i do
4: District assignment(point i ) ←District assignment(hub closest to point i )

5: for each district j do
6: hub j ←Centroid(district j )

Optimal placement for the hubs is famously NP-hard, or likely to be computation-
ally intractable, and Lloyd’s algorithm often converges on a local optimum (the
best in its neighborhood) rather than a global optimum.

There are several fundamental challenges for Voronoi-type algorithms in this set-
ting: first, wemust decide on a notion of distance. Should wemeasure distance
to the nearest hub based on geographic distance, travel time, or something else?
Moreover, these Voronoi diagrams have lines that cut across building blocks like
census blocks and precincts. Finally, the algorithm so far is completely targeted to
distanceminimization and does not balance population.

A few of the issues above can be addressed. For example, power diagrams are gen-
eralizations of Voronoi diagrams in which each hub also has an associated weight
(Figure 21) [7, 17].6 In one power diagram implementation based on amodified
Lloyd’s algorithm, Cohen-Addad, Klein, and Young [7] construct districting plans
that are population-balanced and compact.

Figure 21: Power diagrams are shown for Iowa and Arkansas. The shading of each map represents
population density. Figures provided by Richard Barnes.

Moreover, all of the cells are convex polygons, and they have at most six sides on
average.

Although the districts induced by power diagram cells are balanced and compact,
they still face the issue of units. To achieve population balance, the polygons often
split units through their centroids, where their entire population is assumed to be

6The power diagram cell for a hub h with weight wh and distance function d is the set of points x
such that d(x,h)2 −wh ≤ d(x,h′)2 −wh′ for every other hub h′ 6= h.



O
nline

Pre-print
4. Seeking “best” plans: Optimization 325

located. This means that assigning census units based on these idealized polygon
districts is not straightforward. Modifying these plans to respect unit boundaries
may ultimately require sacrificing compactness, population balance, and even
contiguity. We discuss refinement issues more generally in Section 4.4.

4 .2 METAHEURISTICS AND RANDOM WALK
VARIANTS

When perfect optimization is elusive, computer scientists often turn to heuristics,
which accept approximate or local solutions instead of exact or global solutions.
In practice, a good heuristic can often identify strong solutions quickly. Although
some heuristics are specialized to redistricting,metaheuristics are general strate-
gies that canbeapplied“outof thebox” tooptimizationproblemsdrawn frommany
different domains. Various computational redistricting methods have adapted
well-knownmetaheuristic algorithms tomap-drawing.

Many common metaheuristics employ random walks of the kind discussed in
Section 3.2, which explore the state space (the set of all valid plans) by starting
with some plan andmaking an edit. Since we begin with a plan and compare it
with neighbors, we can also call this strategy a local search. A basic local search
algorithm known as hill climbing is illustrated in Figure 22. In each step, the
algorithm considers replacing the current plan with a proposed neighbor, and
proceeds with the replacement if the new plan has a better score. For example, the
neighborhood of a Plan Amay be composed of all plans that can be created from
Plan A by a single flip step, swap step, or recombination step (see Section 3.2). In
addition, wenowneed anobjective function and a rule for determining acceptance
of each neighbor based on its score.

Figure 22: In this visualization of the state space, the global maximum is indicated with a blue arrow
and local maxima are indicated with red arrows. If hill-climbing optimization begins at the light green
circle the algorithmwill identify the local maxima at the dark green circle, but will not find the global
maximum.

Careful engineering is required to design an effective local search algorithm. If
the objective functions take a lot of time to evaluate or if the algorithm has to
evaluate, many neighboring plans at each step, it can take a lot of time to carry
out a single step of local search. On the other hand, if plans do not have many



O
nline

Pre-print
326 Redistricting algorithms

neighbors, it could takemany steps before a poorly performing plan is improved
to an acceptable level.

Several local-search variants have been used to design districting plans:

• Hill climbing, as already mentioned, only accepts improvements until it
reaches a plan whose neighbors are all worse, which is necessarily a local
optimum. (This is used in [2, 31, 45].) Hill climbing often gets stuck in local
optima, as illustrated in Figure 22. To improve the likelihood of success, hill-
climbing algorithmsoften call a sampler todrawmanydifferent randomstart-
ing plans and restart the process several times, keeping the best-performing
local optimum among the different runs.

• Simulatedannealing (used in [2, 6, 15, 30, 45]) attempts toavoid local optima
by sometimes allowingmoves to worse scores. Inspired by certain physical
processes, this stochastic algorithm maintains an additional temperature
parameter that starts “hot” (high parameter) and “cools” (decreasing the
parameter) slowly over the course of successive steps. The probability of
transitioning to a worse neighboring plan is controlled by the temperature:
while the temperature is hot, worse plans are accepted and the algorithm can
explore the state space; and as the temperature cools, hill climbing kicks in
and the algorithm can improve to a high-quality plan.

• Tabu search (used in [2, 3, 28, 45]) keeps a memory of the plans that it has
recently visited and avoids returning to these already-visited plans. This
strategy encourages broader exploration of the state space by preferring
unvisited neighbors.

• Evolutionary algorithms (used in [2, 32]) draw inspiration from biology to
quickly create a diverse collection of plans. In this technique, a population of
plans evolves over the course of the algorithm by a combinationmutating, or
taking a basic randomwalk step, and crossover, which combines two plans in
amore drastic move to generate one or more child plans with traits of both
parents.

The crossover method that we implemented in our evolutionary algorithm, de-
picted in Figure 23, is based on the approach in Liu et al. [32]. Two parent plans are
drawn from the population and their common refinement (the regions resulting
from overlaying the two parent plans) is calculated, as in Figure 23c. The common
refinement likely has manymore regions than the desired number of districts, so
the next step is tomerge these smaller regions together (using a similar method
to Chen et al. [9, 10]) until there is a correct number of districts (see Figure 23d).
At this point the districts may have unbalanced populations, so the final step is to
make small adjustments to balance out the population (see Figure 23e).

COMPARING METAHEURISTICS

To offer a coarse comparison of these optimizationmethods, we apply several of
themtoseek theminimumnumberof cut edges inan Iowacongressionaldistricting
plan. We apply hill climbing, simulated annealing, and an evolutionary algorithm,
togetherwith a flip step randomwalk. In each casewe allow a population deviation



O
nline

Pre-print
4. Seeking “best” plans: Optimization 327

(a) Parent Plan 1 (b) Parent Plan 2

(c) Common Refinement (d) Merged Districts (e) Child Plan

Figure 23: (a-e) Example of a crossover step similar to the one used in Liu et al. [32]. Two parent plans
are chosen from the population. Their common refinement is computed and the resulting regions are
merged until there are four districts. Themerged districts are adjusted to achieve population balance,
and the resulting child plan is added to the population.

of up to 5% from the ideal district size. In Figure 24 we show the outcomes of
running the same suite of metaheuristic algorithms with the same starting plan
two different times.

Some details of these comparisons are found in the figure captions, but here are
a few themes. Hill climbing quickly (within a few hundred steps) finds a local
minimum in each run, whereas simulated annealing fluctuates but eventually
outperforms the strictly greedymethod. One risk with simulated annealing is that
it may pass up a promising solution early in hopes of finding something better,
only to end at a poor-quality solution.

To illustrate the evolutionary algorithm, we show themaximum score (light green)
and minimum score (dark green) over the population of ten plans at each step.
(The same starting plan from hill climbing and simulated annealing is included in
the starting population for the evolutionary runs.)

The relative performance of thesemetaheuristic approaches, however, depends
heavily on user choices. They could always have been run for longer, or cleverly
implemented and tuned. Nonetheless, we hope to have illustrated some of the
issues and tradeoffs with basic implementations. In these short and untuned runs,
eachmethod identified plans with a small number of cut edges, but none of them
found the global minimum. Figure 25 shows an example of a plan with only 29 cut
edges and less than 5% population deviation, which we show below to be the true
minimum.

Metaheuristics are largely agnostic to the particular objective function in a redis-
tricting problem. This is both a positive and a negative aspect of these algorithms:
On the one hand, they are easily adapted to the particularities of a given state or



O
nline

Pre-print
328 Redistricting algorithms

set of district criteria, but on the other hand, they are unable to leverage structure
in a specific objective function that might make optimization faster.

Figure 24: These plots compare two different runs of three metaheuristic strategies: hill climbing (red),
simulated annealing (blue), and an evolutionary heuristic (dark green is the populationminimum and
light green is the populationmaximum number of cut edges)

Figure 25: This plan has the fewest number of cut edges (29) for partitioning Iowa into four districts
with at most 5% population deviation from ideal (this plan has a population deviation of less than
3.5%).

4 .3 INTEGER PROGRAMMING

Somewhere between appliedmathematics and computer science is the discipline
of operations research, which is built around approaches to difficult optimization
problems, frommaximizing profit while satisfying demand to scheduling tasks on
a computer tomaximize throughput. Starting from these problems as central ex-
amples, these fields have developed a taxonomy to classify optimization problems
based on their objective functions and constraints. Once we recognize a problem
within that taxonomy, we can leverage appropriate general-purpose strategies that
solve similar problems efficiently.

Within this taxonomy, many redistricting problems can be understood as integer
programs, which can be written in the following form:

minimizex f (x)
subject to g (x) ≥ 0

x ∈Zn .

Here, x denotes the set of decision variables used to encode districting plans. The



O
nline

Pre-print
4. Seeking “best” plans: Optimization 329

function f (x) gives the value of the objective function evaluated at x. The function
g (x) encapsulates constraints on x (e.g., that the population of each district must
not deviate substantially from the ideal); we can think of g (x) as vector-valued,
meaning that we can enforce more than one constraint at a time. Finally, the
constraint x ∈Zn is mathematical notation denoting that x is a tuple of n integers;
that is, the unknown in an integer problem is a list of n numbers without fractional
parts. The notation above is extremely generic: Nearly any computational problem
whose output consists of integers can be written in this form.7

Not unlike the metaheuristics in Section 4.2, algorithms for solving integer pro-
grams attempt to cut down the state space of possible solutions to amanageable
size by using the constraints and bounding the objective in variousways. For exam-
ple, a common strategy is relaxation, whereby constraints are removed from an in-
teger program tomake it easier; if one of the relaxed constraints is violated in the re-
sulting solution, it is addedback to the integer programand solving is restarted [25].
Similarly, branch-and-bound algorithmsmay drop the integer constraint, resulting
in amuch easier (and typically convex) problem to solve algorithmically, as well as
a bound on the best possible objective value; then, various variables are pinned to
nearby integers until the solution satisfies all the constraints [36, 49].

Integer programming algorithms and local searchmetaheuristics are similar in the
sense that both navigate the space of feasible solutions while looking to improve
an objective function. Themain difference is that integer programming algorithms
are typically (but not always) aimed at extracting a global optimum via carefully
designed bounding and search strategies. That is, the heuristics used in integer
programming are generally conservative, ordering potential x values to try based
on their likelihood of solving the integer program but never throwing one away
until it can safely be ruled out.For this reason, we can be confident in the output of
integer programming tools, but they can take an extremely long time to terminate.

Integer programming formulations have a long history in redistricting, going back
again to the 1960s and the work of Hess, Weaver, and collaborators [4, 5, 7, 11, 25,
26, 30, 36, 39, 49]. In the sectionbelow,we give an example of howone could phrase
redistricting as an integer program.

DISTRICTING AS AN INTEGER PROGRAM

Suppose we wish to design d districts in a state with n census units; our task is to
assign each unit to one of the d districts. We can introduce a binary variable xi j

for each census unit i (ranging from 1 to n) and district j (ranging from 1 to d). We
interpret xi j as follows:

xi j =
{

1 if unit i is in district j
0 if unit i is not in district j .

7In a standard trick, an inequality constraint like 2x ≤ 5 can be written as −2x +5 ≥ 0 and an equality
constraint like x = 10 can be written as x ≥ 10,−x ≥−10. We can put all three together in vector form as
(−2x +5, x,−x) ≥ (0,10,−10). This lets us use g (x) ≥ 0 as a canonical form for systems of equalities and
inequalities.



O
nline

Pre-print
330 Redistricting algorithms

Our goal is to assign each xi j a value of 0 or 1 in such a way that satisfies certain
constraints and corresponds to the best possible plan for a certain objective func-
tion.

We have to add several constraints to make sure that x is reasonable. Each variable
xi j always takes on one of two values, 0 or 1. These are integers, but to avoid
nonsensical outputs like xi j = 5 we additionally constrain 0 ≤ xi j ≤ 1 for all units i
and districts j . Similarly, we want tomake sure to assign each unit to exactly one
district. Consider a single unit i . If we sum the xi j values for all districts j , we have
computed the number of districts to which unit i was assigned. For example, if
there are four districts, then xi 1+xi 2+xi 3+xi 4 equals the number of districts towhich
unit i is assigned. Hence, we need to enforce the constraint

d∑
j=1

xi j = 1, for all units i .

Next, suppose we want to ensure that every district has a population between a
lower bound ` and an upper bound u. We write pi for the population of unit i ;
for example, p8 = 100,000 means that there are 100,000 people in unit 8. Given the
variables xi j above, this means that ∑n

i=1 pi xi j records the population of district
j . (Since xi j has a value of zero if unit i is not in district j , the sum excludes the
populations of units i that are not assigned to district j , leaving behind just the
relevant populations that are used to construct the district.) This gives

`≤
n∑

i=1
pi xi j ≤ u, for all districts j .

Finally, we need to design an objective function. There aremany possible objec-
tive functions that are relevant to redistricting, such as minimizing the sum of
distances between voters and their district’s center [26, 36, 49], minimizing the
number of counties that are split intodifferent districts [4], or optimizing ameasure
of compactness [30]. In our example, we minimize the number of cut edges by
introducing another variable x ′, with components x ′

ab for each pair of adjacent
units a and b. These x ′ variables encode whether or not a given edge is a cut edge
in the assignment:

x ′
ab =

{
1 if units a and b are in different districts
0 if units a and b are in the same district.

The number of cut edges in a plan can then be written as the sum∑
ab x ′

ab , and the
objective is to minimize this sum.

These new x ′ variables require additional constraints. They too must be con-
strained to take on integer values between 0 and 1. We also need to ensure that the
x ′

ab can only take a value of 0 if a and b are actually assigned to the same district;
otherwise the algorithmwould assign 0 to all of the x ′ to achieve aminimum ob-
jective value of zero. That is, there must be some district j such that xa j = 1 and



O
nline

Pre-print
4. Seeking “best” plans: Optimization 331

xb j = 1 for x ′
ab to take a value of 0, and otherwise the constraints must require xa j

to take a value of (at least) 1. We achieve this by constraining

x ′
ab ≥ xa j −xb j

x ′
ab ≥ xb j −xa j

}
for all adjacent units a and b and all districts j

These constraints ensure that x ′
ab canonly equal 0 (reflecting that the edge from a to

b is not cut, which happens when a and b are in the same district) if xa j = xb j for all
districts j . (For instance if xa1 = xb1 = xa3 = xb3 = xa4 = xb4 = 0 whereas xa2 = xb2 = 1,
this records that a and b are both in district 2.) If xa j 6= xb j for some j , then the
inequalities force x ′

ab to be at least one (indicating a cut edge).

Letting m denote the number of pairs of adjacent units, we can put all these pieces
together, arriving at an integer program:

minimizex′
∑

ab x ′
ab

subject to 0 ≤ xi j ≤ 1 for all units i and districts j ,
0 ≤ x ′

ab ≤ 1 for all adjacent units a and b,∑
j xi j = 1 for all units i ,

`≤∑
i pi xi j ≤ u for all districts j ,

x ′
ab ≥ xa j −xb j for all adjacent units a and b and districts j ,

x ′
ab ≥ xb j −xa j for all adjacent units a and b and districts j ,

x ∈Zn×d

x ′ ∈Zm .

This problem is nothingmore than careful, unambiguousmathematical notation
for our map-partitioning problem. Once our problem is written in this form, it can
be handed over to powerful solvers, pieces of software designed to tackle problems
in a specific form efficiently.

There are many properties to notice about the problem above. In simple notation,
we are able to capture many of the demands of a redistricting problem in a fashion
that is easy to communicate to a computer. More importantly, the objective and
constraints are linear, a valuable property that can help integer programming
algorithms to succeed. Once expressed as an integer program, our problem can
be run through an integer programming solver, software specifically designed to
optimize these instances. Many such solvers are available commercially and open
source. These solvers tell you when they definitively identify global optima, but
theymay take an extremely long time to do so.

Our example neglects important criteria for districting plans, some of which are
difficult or cumbersome to express in the formalism above. High up on that list is
district contiguity. But something is working in our favor here: although contiguity
is not explicitly enforced in the constraints of our integer program, becausewemin-
imize cut edges, the optimal plans identified by the program tend to be contiguous.
That is, districts that are split into several parts usually havemore cut edges than
contiguous districts and so are unlikely to be identified as optimal. In Figure 26, we
see four example outputs of the above integer program using counties as building
block units for two different values of population deviation allowance and two



O
nline

Pre-print
332 Redistricting algorithms

different states. Three of the identified plans are contiguous and the fourth has
only one discontiguous district. The idea that we dropped the difficult contiguity
constraint and got contiguous districts anyway is a successful relaxation, which
we discuss in general terms below.

When dealing with multiple scores in an optimization framework, one solution
x is said to dominate another solution x ′ if x is at least as good as x ′ in each score.
In our setting, we can say that plan P1 dominates P2 if it has no more cut edges
and no greater population deviation. The plans identified by our integer program
lie on the Pareto frontier, the set of solutions that are not dominated by any other
solutions. All other plansmust lie above the curve formed by this frontier.

Notably, we found that the global minimum in Iowa at ≤ 5% deviation is 29 cut
edges (Figure 27), which beats the local minima identified bymetaheuristic runs
in Section 4.2. But beware of twomajor caveats: first, Iowa is much smaller than
the typical redistricting problem in combinatorial terms, and this programwould
not have run to completion on any state’s precincts or census blocks. Second, the
choiceof cut edgesas anobjective functiongaveus contiguitymoreor less “for free.”
Explicit contiguity constraints have been included in some approaches [42, 49] so
that they can optimize other objective functions, at the cost of increased size and
complexity for the integer program.

(a) 0.1%Deviation, 35 Cut Edges (b) 10%Deviation, 29 Cut Edges

(c) 0.1%Deviation, 36 Cut Edges (d) 10%Deviation, 30 Cut Edges

Figure 26: Plans built out of Iowa counties withminimum cut edges for allowed population deviations
of 0.1% and 10% (top), and analogous plans built out of Arkansas counties (bottom).

4 .4 RELAXATION AND REFINEMENT

We have seen several examples where it is strategic to “relax” constraints, i.e.,
temporarily loosen them or drop them altogether. Relaxations canmake a difficult
problem more tractable, and solutions to these relaxed problems can then be



O
nline

Pre-print
4. Seeking “best” plans: Optimization 333

(a) Iowa (b) Arkansas

Figure27: The relationshipbetweenallowedpopulationdeviationandminimumcutedges indistricting
plans built out of Iowa counties (left) and Arkansas counties (right). The black dots represent resulting
runs of our example integer program for various values of population deviation. The gray line shows a
lower bound on theminimum number of cut edges. For example, the minimum value is not known for
deviations between 0.1 and 0.2 (i.e., 10% and 20%), but the valuemust be between 27 and 29 in Iowa
and between 28 and 30 in Arkansas.

refined, if needed, tomake them valid. Alternatively, these refinement steps can
occur at intermediary stages throughout the algorithm.

Given a solution that has been produced by an optimization procedure, we can
refine it in several ways: passing to discrete units, passing from coarser to finer
units, or exchanging units to better meet some goals [9, 10, 32, 37]. The most
common refinement strategy employs local searchmethods such as flip and swap
steps (Section 3.2); see Levin and Friedler [33] for an example. Indeed, many
metaheuristic local searchmethods can be thought of as iterative refinement.

For a coarse-to-fine example, integer programming may be too slow to run at
the census block level, so we can first optimize a plan at the census tract level
(with bigger pieces) and then try to break down a small number of tracts to tune
the solution to better population balance at the block level. For a discretization
example, the geometric methods in Section 4.1 generate districts as polygonal
shapes. To transform these plans into partitions of the census units, Cohen-Addad
et al. [7] assigns thedividedblocks to oneof theneighboringdistrictswith attention
to population deviation (see Figure 28).

Refinements can occur asmid-course adjustments. Consider that agglomerative
methods (Section 3.1) often fail because they build partial plans that have no
connected, population-balanced completions. Instead of restarting the process
each time this problem is encountered, a refined procedure can backtrack from
near a dead end to look for a sequence of choices that can be completed. Another
example is found in Jacobs andWalch [30], where a population-balancing auction
is run at every iteration of their energy-minimizing algorithm.

Refinements help to ameliorate high rejection rates. There is no guarantee, how-
ever, that small refinements can repair invalid plans or correct course effectively in
mid-run, and the repair timemay end up being longer than the time it takes to run
the initial algorithm repeatedly.



O
nline

Pre-print
334 Redistricting algorithms

Figure 28: The figures on the left are power diagrams for Ohio (generated as described in Cohen-Addad
et al. [7]) and the figures on the right show how these geometric districts can be adjusted to respect
the boundaries of census blocks while still maintaining population balance and contiguity. Figures
courtesy of Philip Klein.

5 CONCLUSION: THE FUTURE OF

REDISTRICTING ALGORITHMS

Algorithmic tools are already extremely useful in redistricting. They can identify
promising plans and refine proposed plans. They can generate samples of many
thousands or millions of plans to help contextualize a candidate plan.

The active field of redistricting algorithm design continues to produce improved
techniques, andmapmakers and analysts canmake swift use of these advances.
But as with all powerful tools, it is important to understand the limitations of
redistricting algorithms in order to use them effectively and responsibly. In this
section we discuss several of these limitations.

In the early days of optimistic outlooks on computational redistricting, it looked
like rapid advances in computing would soon overcome the difficulties in the
problem. In 1963, Weaver and Hess [51] wrote:

“No available programs or computer techniques are knownwhich will
give a single, best answer to the districting problem, though such a solu-
tion seems possible if enough funds and efforts are put to the problem,
especially considering the rapid advances in size and sophistication of
available computers.”

Real-world redistricting problems, however, are likely to be forever too complex
for computers to solve optimally. Even if there were consensus as to what makes
one plan better than another, not only does computational intractability limit our
ability to identify the best solution in current practice, but the underlying reasons



O
nline

Pre-print
5. Conclusion: The future of redistricting algorithms 335

might keep that prospect out of reach, despite advances in computing. Instead,
wemust settle for plans that may be far from optimal.

There are roles both for humans and for computers in redistricting. Algorithms
can efficiently produce potential plans, evaluate their properties, and suggest
newways to divide up a region, but they are limited by the accuracy of the input
data, tractability issues, and fidelity of the computational model to the realities of
redistricting. Humans also are subject to the same tractability issues but have a
better understanding of the populations affected by potential districting plans and
the assorted criteria at play when designing voting districts. Hence, a key piece of
the puzzle is how tomediate the relationship between human andmachine. Subtle
issues are at play when designing redistricting systems that citizens and legislators
trust—but not trust toomuch.

5 .1 ABUSE AND GAMING

Computers and algorithms do not remove humans from redistricting and therefore
do not remove human bias and error from the process. On the contrary, algorithms
sometimes amplify human bias, whether intentionally (e.g., an optimization al-
gorithm can be used to maximize the number of seats for a political party) or
unintentionally. One risk of putting unfounded trust in computer-identified plans
is that actors can hide their bias behind the justification of a seemingly neutral
process. If the algorithm generates a random plan, a user can repeatedly re-run
it until it yields a favorable result. Similarly, if the output depends on the starting
point, then a user can re-run the algorithm from different starting points, looking
for a favorable answer. Themore user choices available in an algorithm, themore
opportunities to turn the knobs to try to control the answer. The user can disin-
genuously defend the cherry-picked outcome as being neutrally generated by a
computer.

Some argue that the opportunities to game the rules would be avoided by the
use of optimization: if the best plan is mandated, then a user does not have an
opportunity to advance an agenda. Beyond the usual problem of finding some
common notion of best, there remains the possibility that many dissimilar plans
may earn indistinguishably good scores. An agenda-driven user then can just
choose their favorite plan among those tied for best.

Before placing value on algorithmically generated districting plans, it is crucial to
understand the design decisions and underlying assumptions and simplifications
of the algorithmand the effects that these factors have on the resulting outcomes. It
is important to be cautious with techniques that are not accompanied by an expla-
nation of these decisions and, when possible, to replicate and perform sensitivity
analyses on techniques before advocating for or building off of them.

5 .2 BEST PRACTICES AND A CALL TO ACTION

Far more lawyers, legislators, and everyday citizens are capable of using redistrict-
ing software than writing it, whichmeans that they must place a degree of trust



O
nline

Pre-print
336 Redistricting algorithms

in developers. A few concrete steps can begin to counteract this asymmetry in
understanding of what is “under the hood.”

• Expert consultants and other users of redistricting software should provide
with their reports code and detailed, unambiguous descriptions of the proce-
dures used to arrive at their conclusions. This will help others to assess po-
tential bias in their analysis caused by distributional design, under-sampling,
instability in computation, or the choice of heuristic.

• Maps and other datasets used for analysis should be publicly available to
make the analysis reproducible.

• Academic and commercial tools for redistricting should be released under
open source license to reinforce trust in redistricting procedures.

Redistricting problems are not only too big, but also too human, to be completely
addressed by computers. Algorithms require constraints and objectives to be
precisely defined, but in real-world instances this is not straightforward. Even
seemingly simple constraints like contiguity and population balance are not al-
ways easy to define: How is geographic adjacency handled for islands and bays?
Howmuch population deviation is too much? How do we define compactness?
Abstract goals like preserving communities of interest and legal constraints like
VRA compliance are nearly impossible to quantify precisely enough for a computer
to operationalize. Many of the legal, social, and political aspects of what makes a
valid plan—let alone a good plan—are dependent on context and subtleties that
are better understood by humans than machines. Given that there are real, hu-
man consequences of redistricting decisions, these complexities should not be
entrusted to an algorithm alone.

Computer technology, mathematical theory, and the political landscape continue
to co-evolve. As technology improves, it holds potential to make the tradeoffs
involved in choosing districting plans more transparent, using a wide range of
districting possibilities as a tool in assessment.

Even though algorithmic techniques for redistricting have been used for decades,
many of themathematical and computational aspects of redistricting are not yet
fully understood, and existing techniques have considerable room for improve-
ment. As these areas continue to grow, there aremany opportunities for involve-
ment, whether it’s analyzing existing algorithmic techniques, replicating published
findings, contributing to open-source projects, drawing up strong-performing
benchmark plans, or designing new redistricting algorithms and analysis tools.

ACKNOWLEDGMENTS

There are several people who supported the production of this chapter. Daryl
DeFord provided coding support for our local search hill climbing and simulated
annealing experiments in Section 4.2. Richard Barnes provided Figure 21 using a
modification of the algorithms from Cohen-Addad et al. [7]. Phillip Klein provided
Figure 28. We also acknowledge the generous support of the Prof. Amar G. Bose
Research Grant and the JonathanM. Tisch College of Civic Life. Amariah Becker



O
nline

Pre-print
References 337

acknowledges the support of the NSF Convergence Accelerator Grant No. OIA-
1937095.

REFERENCES

[1] Micah Altman andMichael McDonald. The promise and perils of computers
in redistricting. Duke J. Const. L. & Pub. Pol’y, 5:69, 2010.

[2] Micah Altman,Michael PMcDonald, et al. BARD: Better automated redistrict-
ing. Journal of Statistical Software. Forthcoming, URL http://www. jstatsoft.
org, 42(4):1–28, 2011.

[3] Burcin Bozkaya, Erhan Erkut, and Gilbert Laporte. A tabu search heuristic
and adaptive memory procedure for political districting. European Journal of
Operational Research, 144(1):12–26, 2003.

[4] John R Birge. Redistricting tomaximize the preservation of political bound-
aries. Social Science Research, 12(3):205–214, 1983.

[5] Allan Borodin, Omer Lev, Nisarg Shah, and Tyrone Strangway. Big city vs. the
great outdoors: Voter distribution and how it affects gerrymandering. In IJCAI,
pages 98–104, 2018.

[6] Michelle H Browdy. Simulated annealing: an improved computer model for
political redistricting. Yale Law & Policy Review, 8(1):163–179, 1990.

[7] Vincent Cohen-Addad, Philip N Klein, andNeal E Young. Balanced centroidal
power diagrams for redistricting. In Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 389–396. ACM, 2018.

[8] Carmen Cirincione, Thomas A Darling, and Timothy G O’Rourke. Assess-
ing South Carolina’s 1990s congressional districting. Political Geography,
19(2):189–211, 2000.

[9] Jowei Chen, Jonathan Rodden, et al. Unintentional gerrymandering: Political
geography and electoral bias in legislatures. Quarterly Journal of Political
Science, 8(3):239–269, 2013.

[10] Jowei Chen and Jonathan Rodden. The loser’s bonus: Political geography and
minority party representation, 2016.

[11] Felipe Caro, Takeshi Shirabe, Monique Guignard, and Andrés Weintraub.
School redistricting: EmbeddingGIS tools with integer programming. Journal
of the Operational Research Society, 55(8):836–849, 2004.

[12] Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family
of Markov chains for redistricting. arXiv, 1911(05725):1–28, 2019.

[13] Adam Dobrin. A review of properties and variations of Voronoi diagrams.
Whitman College, pages 1949–3053, 2005.



O
nline

Pre-print
338 References

[14] Johan de Ruiter. On jigsaw sudoku puzzles and related topics, bachelor thesis.
2010.

[15] Benjamin Fifield, Michael Higgins, Kosuke Imai, and Alexander Tarr. A new
automated redistricting simulator usingMarkov chainMonte Carlo. Work.
Pap., Princeton Univ., Princeton, NJ, 2015.

[16] Benjamin Fifield, Kosuke Imai, Jun Kawahara, and Christopher T Kenny. The
essential role of empirical validation in legislative redistricting simulation.
2019.

[17] RolandGFryer Jr andRichardHolden. Measuring the compactness of political
districting plans. The Journal of Law and Economics, 54(3):493–535, 2011.

[18] Edward Forrest. Apportionment by computer. The American Behavioral
Scientist (pre-1986), 8(4):23, 1964.

[19] Edward W Forgy. Cluster analysis of multivariate data: efficiency versus
interpretability of classifications. Biometrics, 21:768–769, 1965.

[20] Center for Range Voting. Gerrymandering and a cure for it—the shortest
splitline algorithm (executive summary), 2019.

[21] Olivia Guest, Frank J Kanayet, and Bradley C Love. Gerrymandering and com-
putational redistricting. Journal of Computational Social Science, 2(2):119–
131, 2019.

[22] Robert S Garfinkel and George L Nemhauser. Optimal political districting by
implicit enumeration techniques. Management Science, 16(8):B–495, 1970.

[23] David Grace. How to quickly create a neutral, non-gerrymandered election
map. Decentralize Today, 2017.

[24] Bob Harris. Counting nonomino tilings and other things of that ilk. 2010. For
G4G9.

[25] Mehran Hojati. Optimal political districting. Computers & Operations Re-
search, 23(12):1147–1161, 1996.

[26] SidneyWayneHess, JBWeaver,HJ Siegfeldt, JNWhelan, andPAZitlau. Nonpar-
tisan political redistricting by computer. Operations Research, 13(6):998–1006,
1965.

[27] Christopher Ingraham. This computer programmer solved gerrymandering
in his spare time. Washington Post Wonkblog, 2014.

[28] Hai Jin. Spatial OptimizationMethods and System for Redistricting Problems.
PhD thesis, University of South Carolina, 2017.

[29] Michael A Jenkins and JohnW Shepherd. Decentralizing high school admin-
istration in Detroit: an evaluation of alternative strategies of political control.
Economic Geography, 48(1):95–106, 1972.

[30] Matt Jacobs and Olivia Walch. A partial differential equations approach to
defeating partisan gerrymandering. arXiv preprint arXiv:1806.07725, 2018.



O
nline

Pre-print
References 339

[31] Myung Jin Kim. Optimization approaches to political redistricting problems.
PhD thesis, The Ohio State University, 2011.

[32] Yan Y Liu, Wendy K TamCho, and ShaowenWang. PEAR: a massively parallel
evolutionary computation approach for political redistricting optimization
and analysis. Swarm and Evolutionary Computation, 30:78–92, 2016.

[33] Harry A Levin and Sorelle A Friedler. Automated congressional redistricting.
Journal of Experimental Algorithmics (JEA), 24(1):1–10, 2019.

[34] Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

[35] Stacy Miller. The problem of redistricting: the use of centroidal Voronoi
diagrams to build unbiased congressional districts. Senior project, Whitman
College, 2007.

[36] Anuj Mehrotra, Ellis L Johnson, and George L Nemhauser. An optimization
basedheuristic for political districting.Management Science, 44(8):1100–1114,
1998.

[37] Daniel BMagleby and Daniel BMosesson. A new approach for developing
neutral redistricting plans. Political Analysis, 26(2):147–167, 2018.

[38] Stuart S Nagel. Simplified bipartisan computer redistricting. Stanford Law
Review, pages 863–899, 1965.

[39] Susan K Norman and Jeffrey D Camm. The Kentucky redistricting problem:
Mixed-integer programmingmodel: Working paper series–03-04. 2003.

[40] Antonio GNNovaes, JE Souza de Cursi, Arinei CL da Silva, and João C Souza.
Solving continuous location–districting problems with Voronoi diagrams.
Computers & Operations Research, 36(1):40–59, 2009.

[41] Elle Najt, Daryl DeFord, and Justin Solomon. Complexity and geometry of
sampling connected graph partitions. arXiv, 1908(08881):1–58, 2019.

[42] Johannes Oehrlein and Jan-Henrik Haunert. A cutting-plane method for
contiguity-constrained spatial aggregation. Journal of Spatial Information
Science, 2017(15):89–120, 2017.

[43] John O’Loughlin and Anne-Marie Taylor. Choices in redistricting and elec-
toral outcomes: The case of Mobile, Alabama. Political Geography Quarterly,
1(4):317–339, 1982.

[44] David J Rossiter and Ronald J Johnston. ProgramGROUP: the identification of
all possible solutions to a constituency-delimitation problem. Environment
and Planning A, 13(2):231–238, 1981.

[45] Federica Ricca and Bruno Simeone. Local search algorithms for political
districting. European Journal of Operational Research, 189(3):1409–1426,
2008.

[46] Aaron Sankin. The tech revolution that could fix America’s broken voting
districts. The Daily Dot, 2016.



O
nline

Pre-print
340 References

[47] Lukas Svec, Sam Burden, and Aaron Dilley. Applying Voronoi diagrams to the
redistricting problem. The UMAP Journal, 28(3):313–329, 2007.

[48] James D Thoreson and JohnM Liittschwager. Computers in behavioral sci-
ence: Legislative districting by computer simulation. Behavioral Science,
12(3):237–247, 1967.

[49] Hamidreza Validi, Austin Buchanan, and Eugene Lykhovyd. Imposing conti-
guity constraints in political districtingmodels. Preprint, 2019.

[50] William Vickrey. On the prevention of gerrymandering. Political Science
Quarterly, 76(1):105–110, 1961.

[51] James BWeaver and SidneyWHess. A procedure for nonpartisan districting:
Development of computer techiques. Yale LJ, 73:288, 1963.


	Preface
	Introduction
	How (not) to spot a gerrymander
	The universe of possibilities
	Theory meets practice
	Adding things up
	Conclusion: What's next?

	Explainer: Compactness, by the numbers
	I Political thought
	Measuring partisan fairness
	Proportionality
	Partisan symmetry
	The efficiency gap
	Ensembles and outliers
	Conclusion: Debating fairness

	Interviews: Concepts of representation
	Redistricting: Math, systems, or people?
	Introduction
	A people problem
	A systems problem
	A math problem
	A systems problem, v.2
	A people problem, v.2

	Political geography and representation
	Introduction
	Urban geography and partisan tilt
	Sampling at different scales
	Seats–votes plots
	East versus West
	Conclusion


	II Law
	Explainer: A brief introduction to the VRA
	Race and redistricting
	Introduction
	Into the thicket: The constitutional framework
	Elaboration: The statutory framework
	Uneasiness: Recasting frameworks in the 1990s
	Hostility: Race, redistricting, and the Roberts Court
	Conclusion: Future of the VRA 

	Law, computing and redistricting in the 1960s
	Against computers
	The apportionment revolution meets the computer revolution
	The widening gap between equality and fairness

	The law of gerrymandering
	Backdrop
	Partisan vs. racial gerrymandering
	Constitutional provisions regulating partisanship
	Alternative approaches
	A call to action


	III Geography
	Race, space, and the geography of representation
	Introduction
	Population distribution: cause and effect
	Geography on multiple scales
	Concluding thoughts: Pay attention to race

	The elusive geography of communities
	Community as a principle of representation
	Are communities places or not?
	The functional logic of regional definition
	Geographic coherence

	Explainer: Communities of interest
	Geography as data
	Introduction
	The Census and its products
	Election data and the precinct problem
	GIS: Shapes and attributes together
	Some specific challenges
	Conclusion: Technology cuts both ways


	IV Math and computer science
	Three applications of entropy
	Introduction
	Application: Measuring segregation
	Application: Splitting counties
	Application: Distance between plans
	Conclusion: Math for democracy

	Explainer: Measuring clustering and segregation
	Redistricting algorithms
	Introduction
	Generating all plans: Enumeration
	Generating many plans: Sampling
	Seeking ``best'' plans: Optimization
	Conclusion: The future of redistricting algorithms

	Random Walks
	Overview: Not a solved problem
	Introduction to MCMC
	MCMC for redistricting
	Exploring with ensembles
	Conclusion: Still not a solved problem


	V On the ground
	Making maps
	Introduction
	The raw materials of a map: Tools and data
	Drawing the maps
	Transparency and secrecy
	Recommendations
	Conclusion: Democracy takes work!

	Interview: Drawing for the courts
	Explainer: Ranked choice voting
	Reform on the ground in Lowell, MA
	Introduction: The VRA as a tool
	At-large electoral systems: A prime target
	Lowell, Massachusetts: A case study
	Conclusion: A settlement in Lowell, and next steps

	Explainer: Race vs. party
	The state of play in voting rights
	How we got here
	Where we're going
	Conclusion: Why it matters

	Epilogue: The view from 2022


