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Abstract. Republican candidates often receive between 30% and 40% of the two-way vote share
in statewide elections in Massachusetts. For the last three Census cycles, MA has held 9-10 seats
in the House of Representatives, which means that a district can be won with as little as 6% of the
statewide vote. Putting these two facts together, it is striking that a Massachusetts Republican has
not won a seat in the U.S. House of Representatives since 1994. We argue that the underperfor-
mance of Republicans in Massachusetts is not attributable to gerrymandering, nor to the failure of
Republicans to field House candidates, but is a structural mathematical feature of the actual dis-
tribution of votes observable in some recent elections. Several of these elections have a remarkable
property in their vote patterns: Republican votes clear 30%, but are distributed so uniformly that
they are locked out of the possibility of representation. Though there are more ways of building a
valid districting plan than there are particles in the galaxy, every single one of them would produce
a 9–0 Democratic delegation.
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1. Introduction

Gerrymandering is the practice of using the formation of electoral districts to create a repre-
sentational advantage for some subsets of the population, or to favor certain kinds of candidates.
In recent years, gerrymandering has received increasing levels of attention and public indignation.
There are essentially two indicators that are taken by the public and by many commentators as
red flags for gerrymandering: bizarre shapes and disproportional outcomes. For instance, the en-
acted 113th Congressional districting plan in Pennsylvania contained a notorious district nicknamed
“Goofy kicking Donald Duck,” whose contorted shape was taken by many as prima facie evidence
of redistricting abuse. Under this map, Pennsylvania elections exhibited nearly 50-50 splits in party
preference, while Republicans held 13 out of 18 seats, or over 72% of the House representation.
While there is indeed compelling evidence that Pennsylvania was gerrymandered in a partisan man-
ner [20, 7], this fact is not established by either shapes or disproportions alone. In this paper, we
show that there can also exist benign and structural obstructions to securing representation that
have to do with not just the number of votes but how they are distributed around the state. We
mean this in the technical sense of “obstruction”—in a departure from much of the political science
literature, we are not discussing a tendency or likelihood, but a mathematical certainty of securing
zero representation.
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This paper is framed to study a “riddle” about Republican voting patterns in Massachusetts:
why is 1/3 of the vote proving insufficient to secure any representation? By contrast, the classic
“cube law” predicts 1/9 of the seats, the logit model from [5] predicts roughly 2/9 of the seats,
and proportional representation would be 1/3 of the seats for Republicans in this situation. In
fact, the partisan lopsidedness of voting in Massachusetts is in some ways comparable to that in
several other states of similar size (e.g., Arizona, Maryland, and Tennessee have comparable U.S.
Senate statistics1) but none of those other states has ever sent a one-party delegation to the House
at any point in the last twenty years, while Massachusetts does so in every election. The core of
our analysis is a rigorous proof that certain actual observed voting patterns guarantee this lockout
effect, regardless of the districting plan. This illustrates the intuitive principle that uniformity itself
can block desired representational outcomes for a group in the numerical minority (like Republicans
in Massachusetts), considering both the numbers and the geometry. Though this is mathematically
obvious when taken to an extreme, exhibiting actual voting patterns with this level of uniformity
is a novel finding.

Massachusetts is one striking case in point, but the broader message is that once the rules have
been set, it becomes a scientific question to study the breadth of partisan outcomes left available
to the districters. This case study describes a surprising limitation on the power to control the
representational outcome. In other cases there will be other surprises, such as an extremely wide
latitude of seats that a party can secure with a given pattern of votes by carefully constructing the
district lines, or simply a baseline of seat outcomes in a non-intuitive range. This paper contributes
to the emerging viewpoint that it is only legitimate to compare an observed partisan outcome
against the backdrop of actual possibility.2

It is very important that we state clearly that this analysis rests on the study of votes and not
voters. We make no claims about the true baseline partisanship of the people of Massachusetts,
but rather we fix particular election outcome data, one race at a time, and vary district lines. For
instance, Massachusetts voters are clearly willing to elect Republican Governors, and have done so
in three of five elections since 2000. We focus our study on Presidential and U.S. Senate votes,
with no attempt to control for incumbency or other factors, because they give an ample supply of
instances with R share in the 30-40% range in recent years, and the paper is focused on how the
distributional effects of cast votes interact with the ability to gerrymander in that range.

Numerical uniformity. We use the phrase “numerical uniformity” to describe a situation in which
the vote shares across the building-block units are extremely consistent. In Section 2 we examine
the numerical distribution of votes in 13 statewide elections in Massachusetts, showing that for five
of them, the numbers alone make it literally impossible to build a R-favoring collection of towns
or precincts with enough population to be a Congressional district. Because this type of analysis
is run on the numbers only, this result is very strong: no district-sized grouping can be formed,
even without requiring contiguity, compactness, or any other spatial constraint on districting. The
reason is that elections in which Republicans are locked out exhibit extremely low variance in the
town- and precinct-level voting results.3 At the very extreme, you could imagine that Republicans
have 35% of the vote statewide, and in each town, and in each precinct—and the reality is closer
to that extreme than one might guess. In particular, even in some elections in which a Republican
received 30-40% of the overall vote, the R vote share rarely exceeded 50% in any precinct, leaving
not enough R-favoring precincts to assemble into a grouping of the size of a congressional district.

1No two states have exactly matched voting data, but all four of these have a Senate tilt in the 61-63% range,
a consistent Presidential tilt in the same direction, and 8-10 House seats over the last two Census cycles. See
https://github.com/gerrymandr/party-tilt for Senate data. Uncontested Congressional races make that vote
data unsuitable to compare directly.
2J. Chen, W. Cho, M. Duchin, J. Mattingly, and W. Pegden have all recently supplied expert reports to that effect
for legal action in states from Florida to Pennsylvania to Wisconsin to Ohio to North Carolina.
3Note that this is the variance of the dataset itself, not of a fitted distribution.

https://github.com/gerrymandr/party-tilt
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Geometric uniformity. On the other hand, “geometric uniformity” describes a situation in which
partisan preference does not correlate strongly to location within the state, reflected in the absence
of partisan enclaves or clusters. In Section 3 we will add a spatial component to our analysis.
Even when it is numerically feasible to collect enough precincts to form an R-favoring district, the
precincts may not be spatially located in such a way that this can be accomplished in a connected
(i.e., contiguous) fashion. We first show visualizations that illustrate the lack of a Republican
enclave in the low-variance elections, suggesting low correlation between location and partisanship
in these Massachusetts elections.4 To corroborate this, we compute clustering scores (which measure
segregation of Republican votes from Democratic votes). We find that the actual vote distributions
in 2000–2010 have clustering levels that are similar to those that would be observed if placing
the Republican votes by drawing randomly from a uniform distribution around the state, but
that clustering has increased over time, which suggests directions for future work that relates
vote clustering to district shape criteria. Geometric uniformity may be contributing to partisan
underperformance above and beyond numerical uniformity, and focused study of that effect on its
own will be quite valuable, but it does not drive the effect that we observe here.

In short, the conclusion is that extreme representational outcomes are not always attributable
to gerrymandering, nor to spatial clustering in the arrangement of voters from either party. Gener-
ally, counterintuitive limitations on representation can emerge from a complicated interplay of the
numerical and spatial distribution of voter preferences; in the case of Massachusetts, the numerical
distribution is so uniform that it makes the spatiality insignificant. The effects on representation of
the distribution (and not just the share) of votes is a difficult mathematical question and is richly
worthy of further study.

While public observers may expect proportional representation as a matter of fairness, even
seasoned political scientists have often measured fairness in terms of universal representational
indices. For instance, the efficiency gap, or EG, can be described as measuring parity of wasted
votes, but is fundamentally measuring whether the seat share S is close to 2V − 1/2, where V
is the vote share. The efficiency gap, EG = 2V − S − 1/2, has been argued to flag a legally
actionable gerrymander when its magnitude is more than 8%. But the Massachusetts data contain
five actual vote distributions (Pres 00, Pres 04, Sen 06, Pres 08, Sen 08) for which even an omniscient
redistricter with the honorable goal of EG = 0 could not succeed: not a single one of the many
quintillions of possible 9-district plans has an efficiency gap below 11% in any of those five races.
This shows that finding a reasonable baseline to decide when gerrymandering has occurred is
a subtler problem than has so far been appreciated in the public discourse or in some of the
mainstream political science literature. A broader and more detailed review of the literature can
be found below in §1.3.

1.1. Data. Massachusetts is home to about 2-3% of the nation’s population, with 6,349,097 people
in the 2000 Census and 6,547,629 people in 2010. After the 2010 Census, the number of Congres-
sional delegates apportioned to MA dropped from 10 to 9 because the state’s population growth
did not keep pace with the country’s.

Massachusetts is made up of 351 jurisdictions that we will call towns (also written in some places
as townships or municipalities), which has not changed over the timespan covered here. Towns
do not overlap, and they completely cover the state; in this language, cities are large towns. We
obtained a town shapefile from MassGIS that has population attributes from the Census [15].

Each town is subdivided into some number of precincts—the level at which election results are
reported—ranging in number from 2166 in 2002 to 2174 in 2016 according to the Secretary of
State’s database [14]. In 2016, 125 towns were not subdivided (the town equals 1 precinct), and at
the other extreme, Boston was made up of 254 precincts, followed by Springfield with 64. Note that

4In physics terms, partisanship has low entropy in Massachusetts.
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the precincts used to administer actual elections are similar but not identical to Voting Tabulation
Districts or VTDs, which are snapshots of precincts reported by the Census Bureau every ten years
[25]. The Secretary of State’s office provided us with a state-modified VTD shapefile from 2010
and directed us to Census resources that cover the earlier period. Unfortunately, small changes to
precincts are common between elections. We cleaned the data to obtain precinct shapefiles that
can be held constant over Census cycles, which involves making a small number of merges. This
produced two shapefiles: one with 2156 precincts and 2002–10 election results, and one with 2151
precincts and 2012–16 election results.

In the tables below, the cast vote data comes from the Secretary of State’s website [14]. They
offer town-level election results back to the year 2000 and much earlier, but precinct-level results
only back to 2002. For population numbers, Census 2000 population figures were used for elections
taking place 2000–08, and Census 2010 for 2010–16. Town-level population was included in the
MassGIS data. The Secretary of State’s shapefile included VTD population numbers with a nearly
exact name match to the tabular data; a script was only needed to switch from a multi-column
format to a single-column format, and the very few non-exact matches were handled by hand with
no ambiguity by human standards. We double-checked the population data against the Census API
to be confident in its quality. For the six elections (2002–10) not covered by that data, we used
a python preprocessing tool to compare the shapefiles of census blocks and precincts [18]. This
computes the assignments of blocks to precincts and aggregates block population up to precincts.

All of our data, together with scripts needed to run the various algorithms described here, can
be found in the public github repositories of the Voting Rights Data Institute [16, 17, 18].

1.2. Setup choices: Election data, number of districts, smallest units, constraints. In
order to illustrate this effects of uniformity observed in real voting data, we run a districting-
feasibility analysis (described in full detail in the Appendix) on election results from 13 Presidential
and U.S. Senate elections in Massachusetts. Endogenous (Congressional) election results are not
considered here because many of the recent races are uncontested. For example, in the 2016 U.S.
House election, 5 out of 9 districts had no Republican who filed to run [2]. Therefore, two-way vote
share analysis would not be meaningful for these races, though we note that our focus on Republican
share of 30-40% is generous with respect to available Congressional data. The analysis could
certainly be extended to other statewide races, including Governor, Attorney General, and Secretary
of State if desired; we chose a collection of races that demonstrates interesting distributional effects
in the 30-40% range of Republican share.

Many political scientists have debated whether statewide races are good predictors of Congres-
sional voting patterns, and if so, which ones are most predictive. That debate is beside the point for
this analysis, which is focused on the range of representational outcomes that are possible for given
naturalistically observed partisan voting patterns. We will also choose to analyze the seat share
possible out of nine Congressional districts for the sake of consistency, even though our timespan
of electoral data includes a period over which the apportionment varied between 9 and 10. Neither
decision blunts the impact of the findings, which study the extent to which empirical patterns
in actual voting data can restrict the range of representation that is possible for a group in the
numerical minority.

In the numerical feasibility section we will only require that districts hew close to the standard
of equal population and that they are made of whole units, such as towns and precincts. Because
of the central role of real voting data in this analysis, we are bound to use precincts as the smallest
building blocks, since that is the smallest level at which vote returns are available. In practice, the
2011 Congressional plan held 2119 precincts intact while splitting 32, which means that fewer than
1.5% were split. Using towns or precincts as unsplittable building blocks does have some precedent
in law and practice. As a historical matter, the state Constitution of Massachusetts did require
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in Article XVI that state councillors be elected from contiguous districts that keep towns and city
wards intact [13], but this system of councillors is now obsolete.

There is a still-active contiguity requirement for state legislative districts, and a rule to preserve
towns as much as is “reasonable,” but no formal contiguity or unit-preservation requirement for
congressional districts. In fact, only 23 states have a contiguity requirement for congressional
districts, while 49 require contiguity for legislative districts. Nonetheless congressional district
contiguity is essentially universal in practice.5 Shape constraints will only be discussed in the
geometric section of the paper (§3).

One possible interpretation of our fencing-out findings is that they primarily identify the partisan
consequences in Massachusetts of putting a heavy weight on the traditional districting principle
that guides districters to avoid splitting municipalities in their plans. A rule requiring at least some
weight on respecting political boundaries is almost as common as the contiguity rule, featuring in
some 19 states for congressional districts and 49 states for legislative districts.6 We do not think
that this is the extent of the conclusion that can be appropriately drawn, however. First, as we
will develop below in §2, there is practically no change in the feasibility analysis when moving
from towns to precincts as building blocks, even though there are more than six times as many
precincts. Second, the strength of the findings here, which show that in fenced-out elections the most
Republican-favoring collection of precincts falls far short of ideal district size, all but guarantees
that under actual current districting practices (contiguity, reasonable compactness, and under 1.5%
of precincts split) the fence-out would remain in force.7 Thus we find robust support for the broader
conclusion that the representational baseline for single-member districts is strongly dictated by the
specific political geography of each time and place.

1.3. Relationship to previous literature. This paper concerns a surprising relationship between
the vote share V for a political party across the districts of a polity and the seat share S that it
is possible to earn, as the district lines vary. It is worth situating this work with respect to a
sizeable political science literature that broadly seeks to capture (V, S) data points observed in
actual elections by treating S as a function of V whose graph is a curve.

Published in 1950, Kendall and Stuart [11] is the classic reference on the origins and status of the

so-called cube law that holds that S
1−S =

(
V

1−V

)3
. The cube law was still the dominant framework

for understanding the votes-to-seats relationship in the 1970s, with papers such as Taagepera 1973
[22] seeking generalizations. Gudgin and Taylor’s important text in 1979 [9] rebooted the cube law
with an enhanced analytical derivation and some discussion of the role of geography in deviations
from its predictions. However, the authors did not develop tools to measure the contributions of
spatial statistics. The logic of the book circulated around the cube law itself and the idea that
deviations are reasonably defined as partisan bias, whether attributable to spatial distribution or
gerrymandering.

Rae’s 1967 text [21] avoids a fully cubic fixation but devotes itself to a philosophically similar
search for rules and principles in the votes-to-seats conversion effected by districts and other systems
in the form of twenty “Propositions.” Tufte’s 1973 article [24] is particularly theoretically rich and
stakes out a very influential new direction. Instead of a search for a grand unified law or rule, Tufte
makes the case for curve fitting. He develops the mathematics for a power relationship between vote
odds and seat odds but ultimately argues for fitting in the linear class, with particular attention to
the slope or “swing ratio” of the best-fit line to the (V, S) data. (In a sense, efficiency gap falls in

5District contiguity can be made somewhat complicated by water and by smaller geographic units that are themselves
disconnected, but these issues are relatively easy to resolve in Massachusetts. Districting rules may be found in the
state constitution [13] and at http://redistricting.lls.edu/states-MA.php.
6See http://redistricting.lls.edu/where-tablefed.php.
7For a detailed analysis of the effects of raising and lowering the priority on various districting criteria with another
set of empirical vote data, see also [6].

http://redistricting.lls.edu/states-MA.php
http://redistricting.lls.edu/where-tablefed.php
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the Tufte tradition but approaches bias with the opposite logic, declaring an optimal slope of 2 and
measuring deviation from that line.) King and Browning 1987 [12] is one article in an abundant
literature taking up the curve-fitting charge. The authors seek joint estimates of the exponent and
coefficient from (V, S) data points, then develop statistical devices for introducing second-order
“disturbance terms.”

Grofman et al 1997 [8] set out to do something new, disaggregating the effects of geographic dis-
tribution, turnout, and malapportionment. But their ingredients are once again only district vote
totals and seat shares, which makes them unable to learn what is possible from a given distribution
of votes as district lines change. Recognizing this, they explain that their distribution term will
not distinguish “the chance effects of geography [from] intentional gerrymandering” (461). More
recently, a cluster of papers has asked new kinds of questions about the relationship between votes
and seats that do probe the effects of geographic distribution over sub-units, starting with the
observation in Calvo–Rodden [3] that the American political science literature “has given surpris-
ingly little attention to the geography of party support” (791). That paper is still premised on a
functional approach to the (V, S) relationship, but notably introduces a Gini coefficient (a statistic
that is not geometric but numerical in the sense of this paper) as part of a discussion of predicting
the degree of majoritarian bias. Finally, two papers of Chen and Rodden [4, 5] seek to scope out
typical districting outcomes by generating samples of districting plans with computers. However,
they simultaneously use a logit model that introduces significant noise to the observed pattern of
votes. Since their algorithms do not sample exhaustively nor representatively, these methods could
not produce a finding that a party is locked out of representation, even if the voting pattern is
fixed. But by also adding significant noise to the votes, the authors decouple their analysis from
the actual vote distribution even more starkly. For instance, [5, Figure 8] shows the results of their
simulated elections in the 2008 Presidential race in Massachusetts. They find Republicans securing
over 20% of the seats on average, whereas we demonstrate below that no district lines whatsoever
could have produced more than one-ninth (11.1%) Republican seats in that particular race. A logit
model, among other probabilistic models of votes, is often employed to represent predicted change
or uncertainty from one race to the next, but any such model risks obscuring lockout effects, such
as the ones found below in Massachusetts Senate and Presidential vote patterns over a full ten-year
Census cycle.

The chief novel contribution of the present paper is an extremely elementary technique that
rigorously establishes much stronger bounds than had been previously available on the achievable
partisan outcomes for a given distribution of votes; in particular, we show for the first time that
multiple actual historical voting patterns featured a minority party with over 30% of the votes but
no possibility of securing any seats at all, no matter how the lines are drawn.8

2. Arithmetic of Republican underperformance

In this section, we describe a method to determine theoretical bounds on the number of districts
with a Republican majority, given only the geographical units, their population, and their vote
totals for D and R candidates in a particular election. For this part of the analysis we impose no
spatial constraints at all; we do not even require contiguity, but would allow a district constructed
out of an arbitrary collection of towns or precincts from around the state. We show, for example,
that even though George W. Bush received over 35% of the two-way vote share against Al Gore,
it is mathematically impossible to construct a collection of towns, however scattered, with at least
10% of the population and where Bush received more collective votes than Gore. (See Figure 4.)

8Taagepera 1989 [23] addresses the question of how much vote share has been needed to produce the nonzero seat
share, but the study considers only observed outcomes of historical elections and does not deal with alternative
district lines. That is, it only looks at what has happened, and not at what is possible with alternative districts.
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Election R Share R Share by Town R Share by Precinct
mean variance mean variance

Pres 2000 35.2% 39.70% .0073 – –
Sen 2000 25.3%∗ 29.15% .0043 – –
Sen 2002 18.7% 20.29% .0019 17.43% .0028
Pres 2004 37.2% 39.99% .0093 34.53% .0140
Sen 2006 30.5 % 33.23% .0076 27.62% .0118
Pres 2008 36.8% 39.00% .0117 33.85% .0179
Sen 2008 31.9% 34.40% .0094 28.91% .0141
Sen 2010 52.4% 53.78% .0201 47.76% .0307
Pres 2012 38.2% 41.05% .0145 34.85% .0227
Sen 2012 46.2% 49.19% .0168 42.64% .0274
Sen 2013 44.8% 48.89% .0217 41.84% .0311
Sen 2014 38.0% 41.14% .0141 34.22% .0205
Pres 2016 35.3% 40.17% .0165 33.04% .0235

Table 1. Statistics of Republican two-way vote share in 13 statewide elections
in Massachusetts. Numbers are truncated rather than rounded. Lower-variance
elections are marked in red. (* Libertarian vote share included with R in 2000
Senate race)

Remark (The Boston Effect). Note that in Table 1 the town-level mean R share reliably overshoots
the statewide R share, while the precinct-level mean errs in the other direction. To see why, recall
that there are 351 towns in the 2016 election, subdivided into 2151 precincts. Boston is composed
of 254 precincts; Springfield has 64; and most other towns have fewer than 25 precincts, with 126
towns (more than a third) having only one. This means Boston is an outlier in size, and it is also
an outlier in the lopsidedness of its Democratic voting majority. (In the 2016 Presidential election,
Boston had only a 14.7% R two-way vote share.)

The town-level averaging underweights Boston because it is weighted equally to tiny towns like
Gosnold (population 75). The precinct-level results overweight Boston because its average precinct
population is under 2500, lower than the statewide average of over 3000. (Exact figures vary between
the two census cycles.) This accounts for the direction of error in the mean of each statistic relative
to the statewide share, which is naturally population-weighted.

As Table 1 illustrates, the elections from 2000 to 2008 had consistently lower variance in their
town- and precinct-level vote shares than can be observed since 2010. Below, we will connect that
to the representability of Republicans across these elections.

2.1. Numerical feasibility of R districts. Let’s first review the limitations on the power of
gerrymanderers that are produced by the numbers alone. We begin with very simplified algebraic
argument that we will refer to as the naive bounds on gerrymandering. In an abstract districting
system with equal vote turnout in its districts, if Party X receives share 0 ≤ V ≤ 1 of the vote, its
possible seat share S is constrained to a range, with the actual outcome depending on how the votes
are distributed across the districts. At its most ruthlessly efficient, Party X could in principle have
barely more than half of the vote in certain districts and no vote in the others, thus earning seat
share up to 2V , or twice its vote share. At minimum, a party with less than half of the vote can
be shut out entirely by having less than half in each district; if Party X has more than half of the
vote, then its opponent has a vote share of 1−V and a maximum seat share of 2(1−V ) = 2− 2V ,
so the minimum seat share for Party X is 1− (2− 2V ) = 2V − 1. For example, a party with 40%
of the vote can get anywhere from 0 − 80% of the seats, while a party with 55% of the vote can
get anywhere from 10− 100% of the seats. The naive bounds would project that districters could



8 VRDI

in principle arrange for Beatty voters in the 2008 Senate race to convert their 32% of the votes to
0− 64% of the seats. In sum, we have

Naive Bounds on Gerrymandering:

{
0 ≤ S < 2V, V ≤ 1/2;

2V − 1 ≤ S ≤ 1, V ≥ 1/2.

But the naive bounds do not take into account constraints introduced by the fixed number of
districts, by the variation in turnout, or by the discreteness of the building blocks. The feasibility
analysis in this paper does account for all of those factors. Table 2 shows that in Ed Markey’s
2013 special election to the Senate, his opponent’s pattern in obtaining 38% of the vote could not
have earned him any more than three district wins out of nine, no matter how the districts were
drawn, despite the naive bounds that suggest up to six district wins could have been possible. And
even more strikingly, though Jeff Beatty earned nearly a third of the vote against Kerry in the
Senate race of 2008, Beatty voters in that distribution are actually locked out of representability
entirely. The actual observed turnout patterns, and the effect of the mandate to build districts
out of intact precincts, have lowered Beatty’s ceiling from 5 districts out of 9 all the way to zero.
Smaller building blocks should mean more flexibility, but shrinking the building blocks from towns
to precincts didn’t in this case help Beatty at all.

Here is our method for measuring feasibility in our setup. Suppose that the ideal district size
(state population divided by number of districts) is denoted by I. Then we will declare that it is
numerically feasible for a party to get k seats in a certain election if there exists a collection of
units (towns or precincts) with population at least M = kI and in which that party has a majority
of the two-way vote share. A feasibility bound for the party is the largest such k that has been
demonstrated.

By contrast, we will say that it is numerically infeasible for a party to get m seats in a given
election if there is proven to be no collection with population at least M = mI and a majority for
the party. An infeasibility bound is the smallest such m that has been demonstrated.

We use a simple sorting algorithm to get feasibility and infeasibility bounds for the elections
considered here, presenting the results in Table 2. Often, but not always, the algorithm produces
tight bounds, in the sense that the infeasibility bound is one more than the feasibility bound.9

Our procedure is simply to greedily create the largest R-majority collection possible from the
chosen geographic units (in our case, towns or precincts) by including them in order of Republican
margin per capita:

δ/p = (#R votes−#D votes)/(census population of unit).

The proof supporting this test of feasibility is shown in the Appendix, §5.
As stated above, we will fix the number of districts at 9 throughout the analysis, matching

the Congressional apportionment at the time of writing. This means that ideal district size is
I = 705, 455 for races before 2010 and I = 727, 514 for 2010–16.

We can make several observations from the table. Moving to finer granularity of building blocks
did not have any impact on the feasibility bounds for most elections. In two cases (Sen 2012 and Sen
2013), the precinct-level bounds are sharper: in both cases, our method applied to towns produces
an inconclusive result about a grouping of size 8I. With precincts, we find that the uncertainty is
eliminated and a grouping of size 8I is shown to be impossible.10 The 2016 Presidential election

9It is possible that the feasibility bound actually overstates the number of districts that can be built with a majority
for the designated party—because the collection of size kI may not be splittable into k appropriate collections of size
I—but any infeasibility bound reflects a mathematically proven impossibility, which drives all the conclusions in this
paper. See Appendix for more details.
10Of course, the impossibility for precincts implies the impossibility for towns—because towns are made up of
precincts—even though the sorting method did not discover this. We handle the inconclusive cases for towns al-
gorithmically in the Appendix.
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Election D Candidate–R Candidate R Share Seat Quota R Feas/Infeas D Feas/Infeas
(9 seats) town prec town prec

Pres 2000 Gore–Bush 35.2% 3.2 0/1 — 9/- —
Sen 2000 Kennedy–Robinson/Howell 25.3%∗ 2.3 0/1 — 9/- —
Sen 2002 Kerry–Cloud 18.7% 1.7 0/1 0/1 9/- 9/-
Pres 2004 Kerry–Bush 37.2% 3.4 1/2 1/2 9/- 9/-
Sen 2006 Kennedy–Chase 30.5 % 2.8 0/1 0/1 9/- 9/-
Pres 2008 Obama–McCain 36.8% 3.3 1/2 1/2 9/- 9/-
Sen 2008 Kerry–Beatty 31.9% 2.9 0/1 0/1 9/- 9/-
Sen 2010 Coakley–Brown 52.4% 4.7 9/- 9/- 8/9 8/9
Pres 2012 Obama–Romney 38.2% 3.4 3/4 3/4 9/- 9/-
Sen 2012 Warren–Brown 46.2% 4.2 7/9 7/8 9/- 9/-
Sen 2013 Markey–Gomez 44.8% 4.0 7/9 7/8 9/- 9/-
Sen 2014 Markey–Herr 38.0% 3.4 3/4 3/4 9/- 9/-
Pres 2016 Clinton–Trump 35.3% 3.2 2/3 3/4 9/- 9/-

Table 2. If districts were to be made out of towns or out of precincts, with no
regard to shape or even connectedness, how many R or D districts could be formed?
Feasibility and infeasibility bounds are shown in this table. Low-variance elections
(see previous table) are marked in red. Election winners shown in boldface; R share
is with respect to 2-way vote; seat quotas are proportional share of 9 seats.

is the only one for which the finer granularity has shifted the feasibility bounds. It is not possible
to find (even scattered) towns totaling three districts’ worth of population which collectively favor
Trump over Clinton, but it becomes possible if precincts are the building blocks. So in that case, it
is narrowly possible to achieve proportional representation for Trump voters; note, however, that
this still falls far short of the seven Trump districts that the naive bounds would have predicted
to be accessible by extreme gerrymandering, and this is even before the contiguity requirement is
applied.

2.2. Numerical uniformity: The role of variance. In statistics, the mean of a set of numerical
data records its average value, and the variance (or second central moment) tells you how spread
out the values are around this mean. We claim that variance in the vote share of a minority group
(here, Republicans) can be a primary explanatory factor for poor representational outcomes in
districting. At one extreme, this is obvious: if the variance is zero, then the preferences in the state
are completely uniform, and every single unit has the same 35% (say) of Republican votes. In this
case, we can easily see that districting has no impact at all: every possible district will also have
35% R, and so will be won by Democrats.

Notably, the Gore/Bush election in 2000 had a two-way R vote share of 35.2% and results in
zero possible R-majority districts. Meanwhile the Clinton/Trump election had a nearly identical
35.3% R vote share but produces the possibility for as many as two districts (built from towns)
with a Trump majority.

The fundamental impact of variance is starkly illustrated in the histograms showing the actual
vote patterns in Figure 1. A low-variance election with a minority of R votes may have very few
units with R share over .5, which are precisely the building blocks needed to build an R-majority
district.

Looking back to Table 2 corroborates this finding: 7 out of 13 elections exhibit a mathematical
impossibility of representation or fall at least two seats short of proportionality—completely inde-
pendent of the choices made by districters. These are precisely the seven elections in which the vote
totals show lower variance, both at the town level and the precinct level. In five of the elections,
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this effect is so pronounced that the minority party is completely locked out of any possibility of
representation.

Figure 1. These histograms show the distribution of Republican vote share by town
in the 2000 and 2016 MA Presidential contests, illustrating that these two elections
had very nearly the same mean but different levels of variance. (The town-level
variance is .0074 and .0165, respectively.)

Figure 2. Skewed truncated normal distributions are shown here with the same
mean as the observed results. These were used to generate election data to test the
hypothesis that vote datasets with higher variance would achieve higher levels of
numerically feasible representation.

2.3. Varying variance. To further probe these outcomes, we generated datasets with similar
mean vote share to the 2000 and 2016 Presidential elections (Figure 2), adjusting the variance of
R-share per unit while maintaining voter turnout and population at actual levels.

We assigned R two-way vote shares chosen from a truncated skewed normal distribution with a
set mean of 35.25% (the average of the Gore/Bush and Clinton/Trump R vote share) and variances
ranging from 0.0020 to 0.0320, covering the range actually observed in Table 1.11 From those
datasets, we re-ran our procedure to produce bounds on the number of possible R seats.

The results, plotted in Figure 3, strongly corroborate the hypothesis that feasible representation
is controlled by variance in vote share. In fact, a high enough variance can be seen to make it
numerically feasible to overperform proportionality.

11We used the scipy python library skewnorm.rvs function to generate random numbers from a skewed normal dis-
tribution with the chosen location, scale, and shape variable. Truncation means that any value outside of the [0, 1]
range was replaced by another value drawn from the same distribution. This truncation process changes the mean
and variance of the distribution being produced, so we ran it iteratively, adjusting the mean and variance until the
desired parameters were produced. Throughout, a shape variable of −8 was selected to best capture the observed
distributions in historical elections. The resulting distributions can be seen in Figure 2.
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Figure 3. Higher-variance datasets reliably produce greater numbers of feasible
seats, even with the vote share held constant. This figure shows the results of three
trials with the protocol described above; the results are indistinguishably close.

3. Geometry of Republican underperformance

We now consider the spatial aspects of the vote distribution with respect to the possibilities for
district formation.

3.1. Lack of Republican enclaves. Compounding the numerical effects described above is the
spatial scatter of the areas preferring Republicans in Massachusetts. To illustrate this, consider
forming a grouping of towns by collecting them in order of their R margin per capita δ/p, as above,
until the collection is large enough to be a valid district. The result is a dramatically discontiguous
assemblage spanning nearly the full state (Figure 4). A similar pattern can be observed in 2006
Senate returns.

Figure 4. These figures show the voting pattern for Republicans George W. Bush
in the 2000 Presidential race (left, by town) and Kenneth Chase in the 2006 Senate
race (right, by precinct). The darkest red units favored the Republican outright,
and the lighter red shade shows the most Republican-favorable units available in
assembling enough population for a Congressional district. These quasi-districts
still preferred Gore and Kennedy, respectively, by comfortable margins.
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In fact, very few of the building blocks seen in the figures are R-favoring at all. Strikingly, only
an astonishing 9 of 2166 precincts in 2006 record a Chase majority.12 Only 31 out of 351 towns
had a G.W. Bush majority in 2000. The largest Bush-favoring collection of towns—which boasts
an aggregate one-vote Bush margin—only has population 426,304, well short of ideal district size
of over 700,000.

3.2. Clustering. The voting data used here makes it possible to test whether, in addition to
increased variance, the election results after 2010 exhibit more spatial clustering than before. To
assess this we use an index called a capy (or clustering propensity) score, which closely resembles
well-established assortativity scores in network science, generalized for use with demographic data.
(See [1] for a comparative mathematical survey of scores of clustering and segregation, and [19] for
a survey of network science that includes assortativity.)

The geographical units that make up a jurisdiction have populations of different sizes and com-
positions. In geographical unit vi, we use xi and yi to denote the populations from group X and
group Y in that unit. We record the X population data as an integer-valued vector x = (x1, . . . , xn)
with entries for each unit’s population, and likewise write y for the Y population figures. If unit vi
is adjacent to unit vj , we write i ∼ j. Then let 〈x,y〉 :=

∑
i

xiyi +
∑
i∼j

xiyj +xjyi. The idea is that

〈x,y〉 is a close approximation to the number of individuals of X type living next to an individual
of Y type, either in the same geographical unit or in neighboring units.13 With this, we define

H(x,y) :=
1

2

(
〈x,x〉

〈x,x〉+ 〈x,y〉
+

〈y,y〉
〈y,y〉+ 〈x,y〉

)
.

By construction, this score varies from 0 to 1 and measures the tendency of each of the two kinds of
population to live next to another member of their own group, rather than the other. A perfectly
uniform distribution where the xi and the yi were constant would earn the score H = 1/2, and a
perfectly clustered distribution where the xi = 0 in one region and the yi = 0 in the complementary
region would tend towards H = 1 in a sufficiently large network.

Table 3 shows the observed H(R,D) clustering results for Republican compared to Democratic
voters. For each election, we create two comparison points by experiment: the uniform H score is
the highest score recorded in 30 trials in which Republican voters were scattered randomly under a
uniform distribution until reaching the statewide R share observed in that election. The clustered
H score is produced by applying a dynamical step that moves votes into a configuration with higher
tendency for neighbors to have the same vote.14 As a general matter, we see that the H scores from
actual election data closely resemble the uniform trials, and that there is only a mild upward trend
in the H scores over time. In some cases, there are interesting comparisons, such as in comparing
the Presidential outcomes in 2000 and 2016—there, we can see that Trump voters are appreciably
more likely to live next to each other than Bush voters were, but still far from highly clustered.

There is a one-way relationship between numerical and geometric uniformity: if there is low
variance in observed partisan shares by unit, then all units tend to have the same shares, so there
is necessarily no major spatial pattern to partisan preference. However, high variance in partisan
share can occur in a way that is strongly spatially clustered (such as if there are pronounced
enclaves) or in a way that is not (such as if there is a checkerboard pattern of strong support
for each party). The findings here strongly support a conclusion that numerically uniform vote

12In fact, the real number is almost certainly 8 precincts. The official results record a large Chase majority in Medford
Ward 5 Precinct 2, which is not consistent with the voting behavior of that precinct in any other election on record,
including the primary that year. Medford town officials were unable to provide corrected data.
13This approximation approaches equality as the populations get large. For details, see [1].
14This belongs to an extremely standard toolkit from physics (cf. Glauber dynamics in the Ising model); replication
code can be found in our GitHub repo [17].
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patterns create obstructions to representation for a group in the numerical minority. Further work
is needed to study the spatial determinants of representability in the high-variance case.

Election R Share uniform H observed H clustered H
Pres 2000 35.2% .5001 .5135 .9456
Sen 2000 25.4%∗ .5000 .5063 .9374
Sen 2002 18.7% .5001 .5035 .8982
Pres 2004 37.3% .5000 .5182 .9351
Sen 2006 30.6% .5001 .5171 .9537
Pres 2008 36.8% .5000 .5210 .9591
Sen 2008 32.0% .5000 .5181 .9513
Sen 2010 52.4% .5001 .5329 .9587
Pres 2012 38.2% .5000 .5243 .9268
Sen 2012 46.2% .5000 .5272 .9597
Sen 2013 44.9% .5002 .5366 .9492
Sen 2014 38.0% .5001 .5276 .9557
Pres 2016 35.3% .5000 .5344 .9480

Table 3. Clustering scores for Republican versus Democratic voters at the town
level in each of the elections discussed in this paper. We show the scoreH = H(R,D)
for a uniform trial, the actual observed votes, and a highly clustered trial, each with
the statewide share that corresponds accurately to the given election. The numbers
are truncated (not rounded) after four decimal places.

4. Conclusion

The numerical and geometric/spatial distribution of voter preferences, and the local rules of
redistricting, restrict and skew the possibilities for representation in an extremely complex way
that one-size-fits-all normative ideals fail to capture. There has been significant recent progress
attacking the mathematical challenges of identifying the representational baseline. New tools, such
as the ones presented here, make it increasingly possible to separate the effects of choosing district
boundaries from the consequences of political geography. A strong message is emerging: the range
of possible representational outcomes under valid redistricting is not always in keeping with the
range that classic modeling approaches have predicted from the vote share alone. Any meaningful
claim of gerrymandering must be demonstrated against the backdrop of valid alternative districting
plans, under the constraints of law, physical geography, and political geography that are actually
present in a jurisdiction.
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5. Appendix: Rigorous feasibility bounds

Suppose you have a list of units with corresponding populations pi and R margins δi = ri − di,
the number of R votes minus the number of D votes. Re-index so that they are ordered from
greatest to least by margin per capita:

δ1/p1 ≥ δ2/p2 ≥ · · · ≥ δn/pn.

We will call a collection of units S a grouping, and let p(S) and δ(S) be its population and R margin,
found by summing the pi and δi for its units. Let Dk be the grouping indexed by {1, . . . , k}. Let K
be the smallest integer k for which δ(Dk) ≤ 0. This means that DK−1 has a collective R majority,
but if you add the Kth unit you get a grouping DK that fails to have an R majority.

Theorem 1. With the notation above, let M be any positive integer.

Case 1. M ≤ p(DK−1). There exists an R-majority grouping of size at least M .

Case 2. p(DK−1) < M ≤ p(DK). Inconclusive: such a grouping may or may not exist.

Case 3. p(DK) < M . There does not exist an R-majority grouping of size at least M .

Proof. In Case 1, it is clear that a Republican grouping can be created, because DK−1 is a
Republican-majority grouping of sufficient size.

We present examples to illustrate that Case 2 is inconclusive.

i ri di pi δi/pi
1 8 0 8 1
2 1 9 10 −4/5
3 0 5 5 −1

i ri di pi δi/pi
1 8 0 8 1
2 1 9 10 −4/5
3 0 8 8 −1

For both examples, fix M = 13. We have K = 2 in both examples because δ(D1) = 8 > 0 and
δ(D2) = 0. Both fall under Case 2 because p(D1) = 8 and p(D2) = 18, while M = 13. In the
left-hand example there exists an R-majority grouping, made by putting together units 1 and 3 to
form a grouping with δ = 3 and population 13. But in the right-hand example there is none, which
is easily confirmed by considering all of the combinations.

Finally, in Case 3, we have p(DK) < M .

Claim. Let S = DK and suppose that p(S) < M . Then for any S′ ⊆ {1, . . . , n},
p(S′) > p(S) =⇒ δ(S′) < δ(S).

The claim asserts that DK has the optimal R margin among all groupings with at least as much
population. Since we seek a grouping larger than p(DK) and since δ(DK) ≤ 0, this implies that a
R-majority grouping cannot be formed. So it just remains to prove the claim.

Let A = S′ \ S and R = S \ S′ denote the sets of indices added to and removed from S,
respectively, to make S′. Since A and R are disjoint, and we have assumed that p(S′) > p(S), it

follows that p(A) > p(R). Let µ = max{ δipi | i ∈ A} and let µ′ = min{ δipi | i ∈ R}. Note that, since

R ⊆ S = {1, . . . ,K} and A ⊆ Sc = {K+1, . . . , n} and the δi
pi

are non-increasing, we have µ ≤ µ′.
Note that every unit i 6∈ S has a Democratic majority (δi < 0). This is because Republican-

majority units are added to S in decreasing order of δi
pi

until the overall margin satisfies δ ≤ 0, so

by construction every unit with a Republican majority is in S. It follows, since A ⊆ Sc, that µ < 0.
We have µ · p(R) > µ · p(A) because p(R) < p(A) and µ < 0. Also, µ′ · p(R) ≥ µ · p(R). So,

transitively, µ′ · p(R) > µ · p(A).
Note that

µ′ · p(R) =
∑
i∈R

µ′ · pi ≤
∑
i∈R

δi
pi
· pi = δ(R).
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Similarly µ · p(A) ≥ δ(A). Combining our inequalities, we have shown that δ(R) > δ(A). It follows
that δ(S) > δ(S′), as claimed. This completes the proof of the claim and the theorem. �

Note that Case 2, the inconclusive situation, is more likely when there are units that are large
relative to the population threshold, because the gap between p(DK−1) and p(DK) is the population
of the Kth unit. So if we consider the formation of districts, we are more likely to get an inconclusive
result with large units like counties or towns and less likely with smaller units like blocks or
VTDs/precincts.

This theorem suggests an algorithm for computing feasibility bounds that is no more complex
than sorting, which makes it fast and efficient. The answers are not completely satisfying, however,
because of the possibility of an inconclusive finding (Case 2) and because the existence of a grouping
with an R majority and population that is m times the size of an ideal district does not imply that
it can be split into m sub-groupings of equal size, each with R majorities. However, a refined
algorithm that could close those loopholes is known to have forbidding computational complexity,
because eliminating the inconclusive case is equivalent to the 0 − 1 knapsack problem, which is
NP-complete.15 Sorting into m collections while tracking both weight and value, which would close
the second loophole, is strictly harder.

Some problems may be solvable in reasonable time even when we lack an algorithm with a poly-
nomial bound. We implemented a pseudo-polynomial dynamic programming knapsack algorithm,
which ascertained in under a minute that the correct feasibility/infeasibility bounds in Senate 2012
and Senate 2013 were 7/8, removing the ambiguity left by the simple sorting algorithm in Table 2.
However, we were unable to find or quickly devise a variant for sub-sorting in the six elections
where multiple R districts are numerically feasible.

15https://en.wikipedia.org/wiki/Knapsack_problem#Definition. For a formal reference, see for instance the
classic [10].

https://en.wikipedia.org/wiki/Knapsack_problem#Definition
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